IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v147y2016icp1-19.html
   My bibliography  Save this article

Improved second order estimation in the singular multivariate normal model

Author

Listed:
  • Chételat, Didier
  • Wells, Martin T.

Abstract

We consider the problem of estimating covariance and precision matrices, and their associated discriminant coefficients, from normal data when the rank of the covariance matrix is strictly smaller than its dimension and the available sample size. Using unbiased risk estimation, we construct novel estimators by minimizing upper bounds on the difference in risk over several classes. Our proposal estimates are empirically demonstrated to offer substantial improvement over classical approaches.

Suggested Citation

  • Chételat, Didier & Wells, Martin T., 2016. "Improved second order estimation in the singular multivariate normal model," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 1-19.
  • Handle: RePEc:eee:jmvana:v:147:y:2016:i:c:p:1-19
    DOI: 10.1016/j.jmva.2016.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1600004X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    2. Dey, Dipak K. & Srinivasan, C., 1991. "On estimation of discriminant coefficients," Statistics & Probability Letters, Elsevier, vol. 11(3), pages 189-193, March.
    3. Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
    4. Dominique Fourdrinier & William Strawderman, 2003. "On Bayes and unbiased estimators of loss," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 803-816, December.
    5. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    6. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    7. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2015. "Estimation of the mean vector in a singular multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 245-258.
    8. Dey, Dipak K., 1987. "Improved estimation of a multinormal precision matrix," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 125-128, November.
    9. S. Liu & H. Neudecker, 1997. "Kantorovich inequalities and efficiency comparisons for several classes of estimators in linear models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 51(3), pages 345-355, November.
    10. Haff, L. R., 1977. "Minimax estimators for a multinormal precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 7(3), pages 374-385, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fourdrinier, Dominique & Haddouche, Anis M. & Mezoued, Fatiha, 2021. "Covariance matrix estimation under data-based loss," Statistics & Probability Letters, Elsevier, vol. 177(C).
    2. Huang, Chao & Farewell, Daniel & Pan, Jianxin, 2017. "A calibration method for non-positive definite covariance matrix in multivariate data analysis," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 45-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fourdrinier, Dominique & Mezoued, Fatiha & Wells, Martin T., 2016. "Estimation of the inverse scatter matrix of an elliptically symmetric distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 32-55.
    2. Tsukuma, Hisayuki & Konno, Yoshihiko, 2006. "On improved estimation of normal precision matrix and discriminant coefficients," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1477-1500, August.
    3. Tsukuma, Hisayuki, 2014. "Bayesian estimation of a bounded precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 160-172.
    4. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    5. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
    6. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    7. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    8. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 327-342, April.
    10. Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
    11. Tatsuya Kubokawa & Akira Inoue, 2012. "Estimation of Covariance and Precision Matrices in High Dimension," CIRJE F-Series CIRJE-F-855, CIRJE, Faculty of Economics, University of Tokyo.
    12. Takayuki Yamada & Tetsuto Himeno, 2019. "Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality," Computational Statistics, Springer, vol. 34(2), pages 911-941, June.
    13. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    14. Fourdrinier, Dominique & Haddouche, Anis M. & Mezoued, Fatiha, 2021. "Covariance matrix estimation under data-based loss," Statistics & Probability Letters, Elsevier, vol. 177(C).
    15. Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
    16. Haddouche, Anis M. & Fourdrinier, Dominique & Mezoued, Fatiha, 2021. "Scale matrix estimation of an elliptically symmetric distribution in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    17. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    18. K. Krishnamoorthy, 1991. "Estimation of a common multivariate normal mean vector," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(4), pages 761-771, December.
    19. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    20. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:147:y:2016:i:c:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.