IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers

Listed author(s):
  • Wang, Wan-Lun
  • Fan, Tsai-Hung

The multivariate linear mixed model (MLMM) has become the most widely used tool for analyzing multi-outcome longitudinal data. Although it offers great flexibility for modeling the between- and within-subject correlation among multi-outcome repeated measures, the underlying normality assumption is vulnerable to potential atypical observations. We present a fully Bayesian approach to the multivariate t linear mixed model (MtLMM), which is a robust extension of MLMM with the random effects and errors jointly distributed as a multivariate t distribution. Owing to the introduction of too many hidden variables in the model, the conventional Markov chain Monte Carlo (MCMC) method may converge painfully slowly and thus fails to provide valid inference. To alleviate this problem, a computationally efficient inverse Bayes formulas (IBF) sampler coupled with the Gibbs scheme, called the IBF-Gibbs sampler, is developed and shown to be effective in drawing samples from the target distributions. The issues related to model determination and Bayesian predictive inference for future values are also investigated. The proposed methodologies are illustrated with a real example from an AIDS clinical trial and a careful simulation study.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11002016
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 105 (2012)
Issue (Month): 1 ()
Pages: 300-310

as
in new window

Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:300-310
DOI: 10.1016/j.jmva.2011.10.006
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Guo-Liang Tian & Ming Tan & Kai Wang Ng, 2007. "An exact non-iterative sampling procedure for discrete missing data problems," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(2), pages 232-242.
  2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
  3. Wang, Wan-Lun & Fan, Tsai-Hung, 2010. "ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1328-1341, May.
  4. Tan, Ming & Tian, Guo-Liang & Wang Ng, Kai, 2006. "Hierarchical models for repeated binary data using the IBF sampler," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1272-1286, March.
  5. Tian, Guo-Liang & Tan, Ming, 2003. "Exact statistical solutions using the inverse Bayes formulae," Statistics & Probability Letters, Elsevier, vol. 62(3), pages 305-315, April.
  6. Barndorff-Nielsen, O. & Schou, G., 1973. "On the parametrization of autoregressive models by partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 3(4), pages 408-419, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:300-310. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.