IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i7p1166-1174.html
   My bibliography  Save this article

Semi-varying coefficient models with a diverging number of components

Author

Listed:
  • Li, Gaorong
  • Xue, Liugen
  • Lian, Heng

Abstract

Semiparametric models with both nonparametric and parametric components have become increasingly useful in many scientific fields, due to their appropriate representation of the trade-off between flexibility and efficiency of statistical models. In this paper we focus on semi-varying coefficient models (a.k.a. varying coefficient partially linear models) in a "large n, diverging p" situation, when both the number of parametric and nonparametric components diverges at appropriate rates, and we only consider the case p=o(n). Consistency of the estimator based on B-splines and asymptotic normality of the linear components are established under suitable assumptions. Interestingly (although not surprisingly) our analysis shows that the number of parametric components can diverge at a faster rate than the number of nonparametric components and the divergence rates of the number of the nonparametric components constrain the allowable divergence rates of the parametric components, which is a new phenomenon not established in the existing literature as far as we know. Finally, the finite sample behavior of the estimator is evaluated by some Monte Carlo studies.

Suggested Citation

  • Li, Gaorong & Xue, Liugen & Lian, Heng, 2011. "Semi-varying coefficient models with a diverging number of components," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1166-1174, August.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:7:p:1166-1174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11000480
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    4. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:stpapr:v:58:y:2017:i:4:d:10.1007_s00362-015-0736-5 is not listed on IDEAS
    2. Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.
    3. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    4. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    5. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
    6. Jun Zhang & Nanguang Zhou & Zipeng Sun & Gaorong Li & Zhenghong Wei, 2016. "Statistical inference on restricted partial linear regression models with partial distortion measurement errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 304-331, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:7:p:1166-1174. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.