IDEAS home Printed from
   My bibliography  Save this article

Semiparametric analysis of longitudinal zero-inflated count data


  • Feng, Jiarui
  • Zhu, Zhongyi


In this article, we consider a semiparametric zero-inflated Poisson mixed model that postulates a possible nonlinear relationship between the natural logarithm of the mean of the counts and a particular covariate in the longitudinal studies. A penalized log-likelihood function is proposed and Monte Carlo expectation-maximization algorithm is used to derive the estimates. Under some mild conditions, we establish the consistency and asymptotic normality of the resulting estimators. Simulation studies are carried out to investigate the finite sample performance of the proposed method. For illustration purposes, the method is applied to a data set from a pharmaceutical company where the variable of interest is the number of episodes of side effects after the patient has taken the treatments.

Suggested Citation

  • Feng, Jiarui & Zhu, Zhongyi, 2011. "Semiparametric analysis of longitudinal zero-inflated count data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 61-72, January.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:1:p:61-72

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, April.
    2. Yuan, Ke-Hai & Jennrich, Robert I., 1998. "Asymptotics of Estimating Equations under Natural Conditions," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 245-260, May.
    3. D. Böhning & E. Dietz & P. Schlattmann & L. Mendonça & U. Kirchner, 1999. "The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 195-209.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, April.
    5. K. F. Lam & Hongqi Xue & Yin Bun Cheung, 2006. "Semiparametric Analysis of Zero-Inflated Count Data," Biometrics, The International Biometric Society, vol. 62(4), pages 996-1003, December.
    6. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:1:p:61-72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.