IDEAS home Printed from
   My bibliography  Save this article

Nonparametric comparison of regression functions


  • Srihera, Ramidha
  • Stute, Winfried


In this work, we provide a new methodology for comparing regression functions m1 and m2 from two samples. Since apart from smoothness no other (parametric) assumptions are required, our approach is based on a comparison of nonparametric estimators and of m1 and m2, respectively. The test statistics incorporate weighted differences of and computed at selected points. Since the design variables may come from different distributions, a crucial question is where to compare the two estimators. As our main results we obtain the limit distribution of (properly standardized) under the null hypothesis H0:m1=m2 and under local and global alternatives. We are also able to choose the weight function so as to maximize the power. Furthermore, the tests are asymptotically distribution free under H0 and both shift and scale invariant. Several such 's may then be combined to get Maximin tests when the dimension of the local alternative is finite. In a simulation study we found out that our tests achieve the nominal level and already have excellent power for small to moderate sample sizes.

Suggested Citation

  • Srihera, Ramidha & Stute, Winfried, 2010. "Nonparametric comparison of regression functions," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2039-2059, October.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2039-2059

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Koul, Hira L. & Yi, Tingting, 2006. "Goodness-of-fit testing in interval censoring case 1," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 709-718, April.
    2. Scheike, Thomas H., 2000. "Comparison of non-parametric regression functions through their cumulatives," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 21-32, January.
    3. Delgado, Miguel A., 1993. "Testing the equality of nonparametric regression curves," Statistics & Probability Letters, Elsevier, vol. 17(3), pages 199-204, June.
    4. Lavergne, Pascal, 2001. "An equality test across nonparametric regressions," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 307-344, July.
    5. Gørgens, Tue, 2002. "Nonparametric comparison of regression curves by local linear fitting," Statistics & Probability Letters, Elsevier, vol. 60(1), pages 81-89, November.
    6. King, Eileen & Hart, Jeffrey D. & Wehrly, Thomas E., 1991. "Testing the equality of two regression curves using linear smoothers," Statistics & Probability Letters, Elsevier, vol. 12(3), pages 239-247, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    2. Juan Carlos Pardo-Fernández & María Dolores Jiménez-Gamero & Anouar El Ghouch, 2015. "A Non-parametric ANOVA-type Test for Regression Curves Based on Characteristic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 197-213, March.
    3. Cédric Heuchenne & Juan Pardo-Fernández, 2012. "Testing for one-sided alternatives in nonparametric censored regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 498-518, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2039-2059. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.