IDEAS home Printed from
   My bibliography  Save this article

Global developments in the competition for land from biofuels


  • Murphy, Richard
  • Woods, Jeremy
  • Black, Mairi
  • McManus, Marcelle


The potential global demand for biofuels and the implications of this for land use and its interaction with food agriculture is reviewed. It is expected that biofuels will form an important element of global transport energy mix (in the order of 20-30% of total requirement) over the next 40 years and beyond. Over this time, there will be a transition from so called first generation biofuels, based on commodity agricultural crops with food/feed uses, to advanced biofuels, sometimes called second and third generation biofuels, based primarily upon lignocellulosic feedstocks. It remains unclear whether these advanced biofuels, based on lignocellulosic materials, will entirely replace first generation or if second generation will be supplemental to first generation. This expansion in biofuels will be coupled to a substantial increase in alternative fuels (electricity, hydrogen, biogas and natural gas) and modal shifts. Biofuel production from agricultural commodity crops that exhibit strong sustainability criteria will remain important (e.g. sugarcane) with supportive and competitive aspects for food security. Land requirement projections estimated for a range of potential biofuel development trajectories range widely and are inherently uncertain. Under the most active scenario that delivers substantive greenhouse gas reductions in transport by 2050 (relative to 2005 levels), approximately 100 Mha of additional land is projected. In the 'business-as-usual' scenario, in which transport energy demand rises by 80% by 2050 from present levels, a land use requirement of 650 Mha is projected. Significant potential exists for producing biofuels that possess high productivity and sustainability profiles through continued research, development and demonstration. Policy and regulation at a global level, that focuses biofuel development on these goals in ways that are synergistic with food agriculture, will simultaneously help to decarbonise transport and maintain a diverse and financially robust agricultural (and forestry) sector.

Suggested Citation

  • Murphy, Richard & Woods, Jeremy & Black, Mairi & McManus, Marcelle, 2011. "Global developments in the competition for land from biofuels," Food Policy, Elsevier, vol. 36(Supplemen), pages 52-61, January.
  • Handle: RePEc:eee:jfpoli:v:36:y:2011:i:supplement1:p:s52-s61

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Aaditya Mattoo & Arvind Subramanian & Dominique van der Mensbrugghe & Jianwu He, 2009. "Reconciling Climate Change and Trade Policy," Working Papers 189, Center for Global Development.
    2. Martin, Philip L., 2007. "Immigration and Agriculture (PowerPoint)," Agricultural Outlook Forum 2007 8037, United States Department of Agriculture, Agricultural Outlook Forum.
    3. Golub, Alla & Henderson, Ben & Hertel, Thomas & Rose, Steven & Avetisyan, Misak & Sohngen, Brent, 2010. "Effects of the GHG Mitigation Policies on Livestock Sectors," GTAP Working Papers 3427, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    4. Huang, Jikun & Rozelle, Scott & Martin, William J. & Liu, Yu, 2007. "Distortions to Agricultural Incentives in China," Agricultural Distortions Working Paper 48478, World Bank.
    5. Oecd, 2008. "Partnership for Development: Agriculture in Africa," OECD Papers, OECD Publishing, vol. 7(12), pages 101-123.
    6. Oecd, 2007. "Competition and Regulation in Agriculture," OECD Journal: Competition Law and Policy, OECD Publishing, vol. 9(2), pages 93-165.
    7. Kym Anderson & Will Martin, 2009. "Distortions to Agricultural Incentives in Asia," World Bank Publications, The World Bank, number 2611.
    8. Reilly, J. & Paltsev, S. & Felzer, B. & Wang, X. & Kicklighter, D. & Melillo, J. & Prinn, R. & Sarofim, M. & Sokolov, A. & Wang, C., 2007. "Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone," Energy Policy, Elsevier, vol. 35(11), pages 5370-5383, November.
    9. Antle, John M., 2008. "Climate Change and Agriculture: Economic Impacts," Choices, Agricultural and Applied Economics Association, vol. 23(1).
    10. Kym Anderson, 2010. "Globalisation's Effects on World Agricultural Trade, 1960 to 2050," Centre for International Economic Studies Working Papers 2010-11, University of Adelaide, Centre for International Economic Studies.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:gam:jeners:v:9:y:2016:i:2:p:92:d:63323 is not listed on IDEAS
    2. Matthias Diermeier & Torsten Schmidt, 2012. "Oil Price Effects on Land Use Competition – An Empirical Analysis," Ruhr Economic Papers 0340, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    3. Fitzpatrick, John J., 2016. "Environmental sustainability assessment of using forest wood for heat energy in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1287-1295.
    4. Karl Kim & Kimberly Burnett & Jiwnath Ghimire, "undated". "Assessing the potential for food and energy self-sufficiency on the island of Kauai, Hawaii," Working Papers 2015-11, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. repec:zbw:rwirep:0340 is not listed on IDEAS
    6. Eugenio Demartini & Anna Gaviglio & Marco Gelati & Daniele Cavicchioli, 2016. "The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy," Energies, MDPI, Open Access Journal, vol. 9(11), pages 1-23, November.
    7. Kim, Karl & Burnett, Kimberly & Ghimire, Jiwnath, 2015. "Assessing the potential for food and energy self-sufficiency on the island of Kauai, Hawaii," Food Policy, Elsevier, vol. 54(C), pages 44-51.
    8. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), January.
    9. Aerni, Philipp, 2011. "Lock-in Situations in the Global Debates on Climate Change, Biotechnology and International Trade," Papers 317, World Trade Institute.
    10. Fabio De Menna & Remo Alessio Malagnino & Matteo Vittuari & Giovanni Molari & Giovanna Seddaiu & Paola A. Deligios & Stefania Solinas & Luigi Ledda, 2016. "Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy," Energies, MDPI, Open Access Journal, vol. 9(2), pages 1-11, February.
    11. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:36:y:2011:i:supplement1:p:s52-s61. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.