IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v78y2011i1p60-73.html
   My bibliography  Save this article

Optimal control of interacting systems with DNSS property: The case of illicit drug use

Author

Listed:
  • Zeiler, I.
  • Caulkins, J.P.
  • Tragler, G.

Abstract

In this paper we generalize a one-dimensional optimal control problem with DNSS property to a two-dimensional optimal control problem. This is done by taking the direct product of the model with itself, i.e. we combine two similar system dynamics under a joint objective functional that is separable in both states and controls. This framework can be applied to the construction of various optimal control problems, such as optimal marketing of related products, optimal growth of separate but interacting economies, or optimal control of two related capital stocks.

Suggested Citation

  • Zeiler, I. & Caulkins, J.P. & Tragler, G., 2011. "Optimal control of interacting systems with DNSS property: The case of illicit drug use," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1), pages 60-73.
  • Handle: RePEc:eee:jeborg:v:78:y:2011:i:1:p:60-73
    DOI: 10.1016/j.jebo.2010.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268111000072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2010.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karl-Göran Mäler & Anastasios Xepapadeas & Aart de Zeeuw, 2003. "The Economics of Shallow Lakes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(4), pages 603-624, December.
    2. W. Davis Dechert & Kazuo Nishimura, 2012. "A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 237-257, Springer.
    3. Dieter Grass & Jonathan P. Caulkins & Gustav Feichtinger & Gernot Tragler & Doris A. Behrens, 2008. "Optimal Control of Nonlinear Processes," Springer Books, Springer, number 978-3-540-77647-5, June.
    4. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    5. Doris A. Behrens & Jonathan P. Caulkins & Gernot Tragler & Gustav Feichtinger, 2000. "Optimal Control of Drug Epidemics: Prevent and Treat---But Not at the Same Time?," Management Science, INFORMS, vol. 46(3), pages 333-347, March.
    6. Wagener, F. O. O., 2003. "Skiba points and heteroclinic bifurcations, with applications to the shallow lake system," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1533-1561, July.
    7. Léonard,Daniel & Long,Ngo van, 1992. "Optimal Control Theory and Static Optimization in Economics," Cambridge Books, Cambridge University Press, number 9780521331586, January.
    8. Gernot Tragler & Jonathan P. Caulkins & Gustav Feichtinger, 2001. "Optimal Dynamic Allocation of Treatment and Enforcement in Illicit Drug Control," Operations Research, INFORMS, vol. 49(3), pages 352-362, June.
    9. Dechert, W.D. & O'Donnell, S.I., 2006. "The stochastic lake game: A numerical solution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1569-1587.
    10. Caulkins, Jonathan P. & Feichtinger, Gustav & Johnson, Michael & Tragler, Gernot & Yegorov, Yuri, 2005. "Skiba thresholds in a model of controlled migration," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 490-508, August.
    11. Caulkins, Jonathan P. & Hartl, Richard F. & Kort, Peter M. & Feichtinger, Gustav, 2007. "Explaining fashion cycles: Imitators chasing innovators in product space," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1535-1556, May.
    12. Feichtinger, Gustav & Grienauer, Waltraud & Tragler, Gernot, 2002. "Optimal dynamic law enforcement," European Journal of Operational Research, Elsevier, vol. 141(1), pages 58-69, August.
    13. Behrens, Doris A. & Caulkins, Jonathan P. & Tragler, Gernot & Feichtinger, Gustav, 2002. "Why present-oriented societies undergo cycles of drug epidemics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(6), pages 919-936, June.
    14. C. Peter Rydell & Jonathan P. Caulkins & Susan S. Everingham, 1996. "Enforcement or Treatment? Modeling the Relative Efficacy of Alternatives for Controlling Cocaine," Operations Research, INFORMS, vol. 44(5), pages 687-695, October.
    15. W.A. Brock & D. Starrett, 2003. "Managing Systems with Non-convex Positive Feedback," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(4), pages 575-602, December.
    16. Brock, W. A. & Dochert, W. D., 1983. "The Generalized Maximum Principle," SSRI Workshop Series 292592, University of Wisconsin-Madison, Social Systems Research Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caulkins, Jonathan P. & Grass, Dieter & Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Prskawetz, Alexia & Seidl, Andrea & Wrzaczek, Stefan, 2021. "The optimal lockdown intensity for COVID-19," Journal of Mathematical Economics, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Zeiler & J.P. Caulkins & G. Tragler, 2011. "Optimal Control of Interacting Systems with DNSS Property: The Case of Illicit Drug Use," Post-Print hal-00978258, HAL.
    2. Zeiler, I. & Caulkins, J.P. & Tragler, G., 2011. "Optimal control of interacting systems with DNSS property: The case of illicit drug use," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 60-73, April.
    3. Ken-Ichi Akao & Takashi Kamihigashi & Kazuo Nishimura, 2015. "Critical Capital Stock in a Continuous-Time Growth Model with a Convex-Concave Production Function," Discussion Paper Series DP2015-39, Research Institute for Economics & Business Administration, Kobe University.
    4. Tatiana Kiseleva & Florian Wagener, 2015. "Bifurcations of Optimal Vector Fields," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 24-55, February.
    5. Rosser Jr., J. Barkley, 2007. "The rise and fall of catastrophe theory applications in economics: Was the baby thrown out with the bathwater?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3255-3280, October.
    6. Herbert Dawid & Engelbert Dockner & Richard Hartl & Josef Haunschmied & Ulrike Leopold-Wildburger & Mikulas Luptacik & Alexander Mehlmann & Alexia Prskawetz & Marion Rauner & Gerhard Sorger & Gernot T, 2010. "Gustav Feichtinger celebrates his 70th birthday," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(4), pages 437-451, December.
    7. Yegorov, Yury & Wirl, Franz & Grass, Dieter & Eigruber, Markus & Feichtinger, Gustav, 2022. "On the matthew effect on individual investments in skills in arts, sports and science," Journal of Economic Behavior & Organization, Elsevier, vol. 196(C), pages 178-199.
    8. G. Feichtinger & A. Steindl, 2006. "DNS Curves in a Production/Inventory Model," Journal of Optimization Theory and Applications, Springer, vol. 128(2), pages 295-308, February.
    9. Reddy, P.V. & Schumacher, J.M. & Engwerda, J.C., 2012. "Optimal Management and Differential Games in the Presence of Threshold Effects - The Shallow Lake Model," Other publications TiSEM d0dda6e4-ecbd-4999-a1f3-2, Tilburg University, School of Economics and Management.
    10. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    11. J. P. Caulkins & G. Feichtinger & D. Grass & G. Tragler, 2007. "Bifurcating DNS Thresholds in a Model of Organizational Bridge Building," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 19-35, April.
    12. Crépin, Anne-Sophie & Biggs, Reinette & Polasky, Stephen & Troell, Max & de Zeeuw, Aart, 2012. "Regime shifts and management," Ecological Economics, Elsevier, vol. 84(C), pages 15-22.
    13. Aart Zeeuw & Chuan-Zhong Li, 2016. "The Economics of Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 513-517, November.
    14. F. O. O. Wagener, 2006. "Skiba Points for Small Discount Rates," Journal of Optimization Theory and Applications, Springer, vol. 128(2), pages 261-277, February.
    15. Heijnen, P. & Wagener, F.O.O., 2013. "Avoiding an ecological regime shift is sound economic policy," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1322-1341.
    16. Yuri Yegorov & Dieter Grass & Magda Mirescu & Gustav Feichtinger & Franz Wirl, 2020. "Growth and Collapse of Empires: A Dynamic Optimization Model," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 620-643, August.
    17. Dechert, W.D. & O'Donnell, S.I., 2006. "The stochastic lake game: A numerical solution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1569-1587.
    18. Wirl, Franz & Feichtinger, Gustav, 2005. "History dependence in concave economies," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 390-407, August.
    19. Moghayer, S. & Wagener, F.O.O., 2009. "Genesis of indifference thresholds and infinitely many indifference points in discrete time infinite horizon optimisation problems," CeNDEF Working Papers 09-14, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    20. Antoci, Angelo & Galeotti, Marcello & Russu, Paolo, 2011. "Poverty trap and global indeterminacy in a growth model with open-access natural resources," Journal of Economic Theory, Elsevier, vol. 146(2), pages 569-591, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:78:y:2011:i:1:p:60-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.