IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v65y2017icp99-109.html
   My bibliography  Save this article

Dynamic carbon emission performance of Chinese airlines: A global Malmquist index analysis

Author

Listed:
  • Liu, Xiao
  • Zhou, Dequn
  • Zhou, Peng
  • Wang, Qunwei

Abstract

Monitoring the carbon emission performance of Chinese airlines helps inform targeted carbon-reduction policies. This paper proposes a global Malmquist carbon emission performance index (GMCPI), which can measure dynamic changes in total factor carbon emissions performance over time using a production frontier framework. The study then applied the proposed index to evaluate carbon emission performance of 12 Chinese airlines from 2007 to 2013; the study also proposed bootstrapping GMCPI to perform statistical inferences on the GMCPI results. The empirical study generated in three meaningful findings. First, the carbon emission performance of the airlines improved by 11.93%, mainly through technological progress. Second, there were carbon emission performance differences among three different airline types; there was also a convergence of carbon emission performance. Third, the most important factor influencing carbon emission performance was the air routes distribution. Chinese airlines should consider improving carbon emission performance further, by establishing an evaluation system, enhancing communication and coordination among different airlines, adjusting the scale of airline development, and optimizing the air routes distribution.

Suggested Citation

  • Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "Dynamic carbon emission performance of Chinese airlines: A global Malmquist index analysis," Journal of Air Transport Management, Elsevier, vol. 65(C), pages 99-109.
  • Handle: RePEc:eee:jaitra:v:65:y:2017:i:c:p:99-109
    DOI: 10.1016/j.jairtraman.2017.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699717301382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2017.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Xuanyu & Byrne, Julie, 2024. "Identifying the determinants of carbon emissions of individual airlines around the world," Journal of Air Transport Management, Elsevier, vol. 115(C).
    2. Liu, Wei & Gao, Lixiang & Song, Hang & Huang, Mingdong, 2021. "Factor market distortion, technology change, and green growth in the Chinese civil airline industry," Journal of Asian Economics, Elsevier, vol. 77(C).
    3. Hyunjung Kim & Jiyoon Son, 2021. "Analyzing the Environmental Efficiency of Global Airlines by Continent for Sustainability," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    4. Xiaodan Gao & Yinhui Wang, 2023. "From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    5. Wang, Feng & Sun, Xiaoyu & Reiner, David M. & Wu, Min, 2020. "Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency," Energy Economics, Elsevier, vol. 86(C).
    6. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    7. Meng, Conghui & Du, Xiaoyun & Zhu, Mengcheng & Ren, Yitian & Fang, Kai, 2023. "The static and dynamic carbon emission efficiency of transport industry in China," Energy, Elsevier, vol. 274(C).
    8. Tanrıverdi, Gökhan & Merkert, Rico & Karamaşa, Çağlar & Asker, Veysi, 2023. "Using multi-criteria performance measurement models to evaluate the financial, operational and environmental sustainability of airlines," Journal of Air Transport Management, Elsevier, vol. 112(C).
    9. Lin, Boqiang & Xu, Mengmeng, 2018. "Regional differences on CO2 emission efficiency in metallurgical industry of China," Energy Policy, Elsevier, vol. 120(C), pages 302-311.
    10. Bagchi, Prantik & Sahu, Santosh Kumar & Kumar, Ajay & Tan, Kim Hua, 2022. "Analysis of carbon productivity for firms in the manufacturing sector of India," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    11. Shuai Zhang & Xiaoman Zhao & Changwei Yuan & Xiu Wang, 2020. "Technological Bias and Its Influencing Factors in Sustainable Development of China’s Transportation," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    12. Peng, Jiachao & Xiao, Jianzhong & Zhang, Lian & Wang, Teng, 2020. "The impact of China's ‘Atmosphere Ten Articles’ policy on total factor productivity of energy exploitation: Empirical evidence using synthetic control methods," Resources Policy, Elsevier, vol. 65(C).
    13. Liu, Xiao & Hang, Ye & Wang, Qunwei & Zhou, Dequn, 2020. "Flying into the future: A scenario-based analysis of carbon emissions from China's civil aviation," Journal of Air Transport Management, Elsevier, vol. 85(C).
    14. Shijie Ding & Jing Zhao & Meng Zhang & Sheng Yang & Hongwei Zhang, 2022. "Measuring the environmental protection efficiency and productivity of the 49 largest iron and steel enterprises in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 454-472, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:65:y:2017:i:c:p:99-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.