IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i2p631-648.html
   My bibliography  Save this article

Humans vs. large language models: Judgmental forecasting in an era of advanced AI

Author

Listed:
  • Abolghasemi, Mahdi
  • Ganbold, Odkhishig
  • Rotaru, Kristian

Abstract

This study investigates the forecasting accuracy of human experts versus large language models (LLMs) in the retail sector, particularly during standard and promotional sales periods. Utilizing a controlled experimental setup with 123 human forecasters and five LLMs—namely, ChatGPT-4, ChatGPT3.5, Bard, Bing, and Llama2—we evaluated forecasting precision through the absolute percentage error. Our analysis centered on the effect of the following factors on forecasters’ performance: the supporting statistical model (baseline and advanced), whether the product was on promotion, and the nature of external impact. The findings indicate that LLMs do not consistently outperform humans in forecasting accuracy and that advanced statistical forecasting models do not uniformly enhance the performance of either human forecasters or LLMs. Both human and LLM forecasters exhibited increased forecasting errors, particularly during promotional periods. Our findings call for careful consideration when integrating LLMs into practical forecasting processes.

Suggested Citation

  • Abolghasemi, Mahdi & Ganbold, Odkhishig & Rotaru, Kristian, 2025. "Humans vs. large language models: Judgmental forecasting in an era of advanced AI," International Journal of Forecasting, Elsevier, vol. 41(2), pages 631-648.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:631-648
    DOI: 10.1016/j.ijforecast.2024.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    2. Eroglu, Cuneyt & Croxton, Keely L., 2010. "Biases in judgmental adjustments of statistical forecasts: The role of individual differences," International Journal of Forecasting, Elsevier, vol. 26(1), pages 116-133, January.
    3. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    4. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.
    5. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    6. Goodwin, Paul, 2005. "Providing support for decisions based on time series information under conditions of asymmetric loss," European Journal of Operational Research, Elsevier, vol. 163(2), pages 388-402, June.
    7. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    8. Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
    9. Fildes, Robert & Kolassa, Stephan & Ma, Shaohui, 2022. "Post-script—Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1319-1324.
    10. Harvey, Nigel & Bolger, Fergus, 1996. "Graphs versus tables: Effects of data presentation format on judgemental forecasting," International Journal of Forecasting, Elsevier, vol. 12(1), pages 119-137, March.
    11. Dilek Önkal & M. Sinan Gönül & Paul Goodwin, 2023. "Supporting Judgment in Predictive Analytics: Scenarios and Judgmental Forecasts," International Series in Operations Research & Management Science, in: Matthias Seifert (ed.), Judgment in Predictive Analytics, chapter 0, pages 245-264, Springer.
    12. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    13. Meub, Lukas & Proeger, Till, 2016. "Can anchoring explain biased forecasts? Experimental evidence," Journal of Behavioral and Experimental Finance, Elsevier, vol. 12(C), pages 1-13.
    14. Chapman, Gretchen B. & Johnson, Eric J., 1999. "Anchoring, Activation, and the Construction of Values, , , , , ," Organizational Behavior and Human Decision Processes, Elsevier, vol. 79(2), pages 115-153, August.
    15. Fildes, Robert & Goodwin, Paul & Önkal, Dilek, 2019. "Use and misuse of information in supply chain forecasting of promotion effects," International Journal of Forecasting, Elsevier, vol. 35(1), pages 144-156.
    16. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
    17. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    18. Xiaoyang Li & Haoming Feng & Hailong Yang & Jiyuan Huang, 2024. "Can ChatGPT reduce human financial analysts’ optimistic biases?," Economic and Political Studies, Taylor & Francis Journals, vol. 12(1), pages 20-33, January.
    19. Bolger, Fergus & Onkal-Atay, Dilek, 2004. "The effects of feedback on judgmental interval predictions," International Journal of Forecasting, Elsevier, vol. 20(1), pages 29-39.
    20. Spyros Makridakis & Fotios Petropoulos & Yanfei Kang, 2023. "Large Language Models: Their Success and Impact," Forecasting, MDPI, vol. 5(3), pages 1-14, August.
    21. Paul Goodwin & Robert Fildes, 2022. "Forecasting with Judgment," Springer Books, in: Saïd Salhi & John Boylan (ed.), The Palgrave Handbook of Operations Research, chapter 0, pages 541-572, Springer.
    22. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    23. Harvey, Nigel, 1995. "Why Are Judgments Less Consistent in Less Predictable Task Situations?," Organizational Behavior and Human Decision Processes, Elsevier, vol. 63(3), pages 247-263, September.
    24. Robert Fildes & Paul Goodwin, 2007. "Against Your Better Judgment? How Organizations Can Improve Their Use of Management Judgment in Forecasting," Interfaces, INFORMS, vol. 37(6), pages 570-576, December.
    25. Yuk Ying (Candie) Chang & Wei Hao, 2022. "Negativity Bias of Analyst Forecasts," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(2), pages 175-188, May.
    26. Webby, Richard & O'Connor, Marcus & Edmundson, Bob, 2005. "Forecasting support systems for the incorporation of event information: An empirical investigation," International Journal of Forecasting, Elsevier, vol. 21(3), pages 411-423.
    27. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
    28. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
    29. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    30. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahimnia, Ben & Tan, Tarkan & Tahirov, Nail, 2025. "Service-level anchoring in demand forecasting: The moderating impact of retail promotions and product perishability," International Journal of Forecasting, Elsevier, vol. 41(2), pages 554-570.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    4. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.
    5. Hewage, Harsha Chamara & Perera, H. Niles & De Baets, Shari, 2022. "Forecast adjustments during post-promotional periods," European Journal of Operational Research, Elsevier, vol. 300(2), pages 461-472.
    6. Khosrowabadi, Naghmeh & Hoberg, Kai & Imdahl, Christina, 2022. "Evaluating human behaviour in response to AI recommendations for judgemental forecasting," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1151-1167.
    7. Sagaert, Yves R. & Kourentzes, Nikolaos, 2025. "Inventory management with leading indicator augmented hierarchical forecasts," Omega, Elsevier, vol. 136(C).
    8. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    9. Chacon, Alvaro & Kaufmann, Esther, 2025. "An overview of the effects of algorithm use on judgmental biases affecting forecasting," International Journal of Forecasting, Elsevier, vol. 41(2), pages 424-439.
    10. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    11. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    12. Cedric A. Lehmann & Christiane B. Haubitz & Andreas Fügener & Ulrich W. Thonemann, 2022. "The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3419-3434, September.
    13. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    14. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    15. Christiane B. Haubitz & Cedric A. Lehmann & Andreas Fügener & Ulrich W. Thonemann, 2021. "The Risk of Algorithm Transparency: How Algorithm Complexity Drives the Effects on Use of Advice," ECONtribute Discussion Papers Series 078, University of Bonn and University of Cologne, Germany.
    16. Petropoulos, Fotios & Spiliotis, Evangelos, 2025. "Judgmental selection of parameters for simple forecasting models," European Journal of Operational Research, Elsevier, vol. 323(3), pages 780-794.
    17. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
    18. Fildes, Robert & Goodwin, Paul & De Baets, Shari, 2025. "Forecast value added in demand planning," International Journal of Forecasting, Elsevier, vol. 41(2), pages 649-669.
    19. Fildes, Robert & Goodwin, Paul & Önkal, Dilek, 2019. "Use and misuse of information in supply chain forecasting of promotion effects," International Journal of Forecasting, Elsevier, vol. 35(1), pages 144-156.
    20. van der Staak, B.B.J.P.J. & Basten, R.J.I. & van de Calseyde, P.P.F.M. & Demerouti, E. & de Kok, A.G., 2025. "Light-touch forecasting: A novel method to combine human judgment with statistical algorithms," International Journal of Forecasting, Elsevier, vol. 41(2), pages 440-451.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:631-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.