IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p345-360.html
   My bibliography  Save this article

A modified VAR-deGARCH model for asynchronous multivariate financial time series via variational Bayesian inference

Author

Listed:
  • Lai, Wei-Ting
  • Chen, Ray-Bing
  • Huang, Shih-Feng

Abstract

This study proposes a modified VAR-deGARCH model, denoted by M-VAR-deGARCH, for modeling asynchronous multivariate financial time series with GARCH effects and simultaneously accommodating the latest market information. A variational Bayesian (VB) procedure is developed for the M-VAR-deGARCH model to infer structure selection and parameter estimation. We conduct extensive simulations and empirical studies to evaluate the fitting and forecasting performance of the M-VAR-deGARCH model. The simulation results reveal that the proposed VB procedure produces satisfactory selection performance. In addition, our empirical studies find that the latest market information in Asia can provide helpful information to predict market trends in Europe and South Africa, especially when momentous events occur.

Suggested Citation

  • Lai, Wei-Ting & Chen, Ray-Bing & Huang, Shih-Feng, 2025. "A modified VAR-deGARCH model for asynchronous multivariate financial time series via variational Bayesian inference," International Journal of Forecasting, Elsevier, vol. 41(1), pages 345-360.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:345-360
    DOI: 10.1016/j.ijforecast.2024.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shih-Feng Huang & Hsin-Han Chiang & Yu-Jun Lin, 2021. "A network autoregressive model with GARCH effects and its applications," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-18, July.
    2. Grigoryeva, Lyudmila & Ortega, Juan-Pablo & Peresetsky, Anatoly, 2018. "Volatility forecasting using global stochastic financial trends extracted from non-synchronous data," Econometrics and Statistics, Elsevier, vol. 5(C), pages 67-82.
    3. Lai, Wei-Ting & Chen, Ray-Bing & Chen, Ying & Koch, Thorsten, 2022. "Variational Bayesian inference for network autoregression models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    4. Lu, Xun & White, Halbert, 2014. "Robustness checks and robustness tests in applied economics," Journal of Econometrics, Elsevier, vol. 178(P1), pages 194-206.
    5. Härdle, Wolfgang Karl & Okhrin, Ostap & Wang, Weining, 2015. "Hidden Markov Structures For Dynamic Copulae," Econometric Theory, Cambridge University Press, vol. 31(5), pages 981-1015, October.
    6. Gianluigi Pelloni & Wolfgang Polasek, 2003. "Macroeconomic Effects of Sectoral Shocks in Germany, The U.K. and, The U.S.: A VAR-GARCH-M Approach," Computational Economics, Springer;Society for Computational Economics, vol. 21(1_2), pages 65-85, February.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Shih-Feng Huang & Meihui Guo, 2014. "Model risk of the implied GARCH-normal model," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2215-2224, December.
    9. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    10. Chen, Xiaohong & Huang, Zhuo & Yi, Yanping, 2021. "Efficient estimation of multivariate semi-nonparametric GARCH filtered copula models," Journal of Econometrics, Elsevier, vol. 222(1), pages 484-501.
    11. Vassilios Babalos & Guglielmo Maria Caporale & Nicola Spagnolo, 2021. "Equity fund flows and stock market returns in the USA before and after the global financial crisis: a VAR-GARCH-in-mean analysis," Empirical Economics, Springer, vol. 60(2), pages 539-555, February.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    14. Di Wang & Yao Zheng & Heng Lian & Guodong Li, 2022. "High-Dimensional Vector Autoregressive Time Series Modeling via Tensor Decomposition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1338-1356, September.
    15. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    16. Chi‐Hsiang Chu & Mong‐Na Lo Huang & Shih‐Feng Huang & Ray‐Bing Chen, 2019. "Bayesian structure selection for vector autoregression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(5), pages 422-439, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    2. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    3. Shi Chen & Cathy Yi-Hsuan Chen & Wolfgang Karl Hardle, 2020. "A first econometric analysis of the CRIX family," Papers 2009.12129, arXiv.org.
    4. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    5. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    6. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, . "Modeling conditional correlations for risk diversification in crude oil markets," Journal of Energy Markets, Journal of Energy Markets.
    8. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    9. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    10. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    11. Kin-Yip Ho & Albert K. Tsui & Zhaoyong Zhang, 2009. "Volatility Dynamics of the UK Business Cycle: a Multivariate Asymmetric Garch Approach," Economie Internationale, CEPII research center, issue 117, pages 31-46.
    12. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    13. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Anas Eisa Abdelkreem Mohammed & Henry Mwambi & Bernard Omolo, 2024. "Time-Varying Correlations between JSE.JO Stock Market and Its Partners Using Symmetric and Asymmetric Dynamic Conditional Correlation Models," Stats, MDPI, vol. 7(3), pages 1-16, July.
    15. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2016. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn," Documentos de Trabajo del ICAE 2016-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    16. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    17. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    18. M. Fatih Oztek & Nadir Ocal, 2012. "Integration of China Stock Markets with International Stock Markets: An application of Smooth Transition Conditional Correlation with Double Transition Functions," ERC Working Papers 1209, ERC - Economic Research Center, Middle East Technical University, revised Dec 2012.
    19. Morema, Kgotso & Bonga-Bonga, Lumengo, 2018. "The impact of oil and gold price fluctuations on the South African equity market: volatility spillovers and implications for portfolio management," MPRA Paper 87637, University Library of Munich, Germany.
    20. Fabio Pisani & Giorgia Russo, 2021. "Sustainable Finance and COVID-19: The Reaction of ESG Funds to the 2020 Crisis," Sustainability, MDPI, vol. 13(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:345-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.