IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i2p305-314.html
   My bibliography  Save this article

On the total operating costs up to default in a renewal risk model

Author

Listed:
  • Feng, Runhuan

Abstract

The paper proposes a new approach to study a general class of ruin-related quantities in the context of a renewal risk model. While the classical approaches in Sparre Andersen models have their own merits, the approach presented in this paper has its advantages from the following perspectives. (1) The underlying surplus process has the flexibility to reflect a broad range of scenarios for surplus growth including dividend policies and interest returns. (2) The solution method provides a general framework to unify a great variety of existing ruin-related quantities such as Gerber-Shiu functions and the expected present value of dividends paid up to ruin, and facilitates derivations of new ruin-related quantities such as the expected present value of total claim costs up to ruin, etc. In the end, many specific examples are explored to demonstrate its application in renewal risk models.

Suggested Citation

  • Feng, Runhuan, 2009. "On the total operating costs up to default in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 305-314, October.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:305-314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00088-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    2. Li, Shuanming & Garrido, Jose, 2004. "On a class of renewal risk models with a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 691-701, December.
    3. Albrecher, Hansjorg & Boxma, Onno J., 2005. "On the discounted penalty function in a Markov-dependent risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 650-672, December.
    4. Dickson, David C. M. & Drekic, Steve, 2004. "The joint distribution of the surplus prior to ruin and the deficit at ruin in some Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 97-107, February.
    5. Avanzi, Benjamin & U. Gerber, Hans & S.W. Shiu, Elias, 2007. "Optimal dividends in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 111-123, July.
    6. Jacobsen, Martin, 2003. "Martingales and the distribution of the time to ruin," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 29-51, September.
    7. Willmot, Gordon E., 2004. "A note on a class of delayed renewal risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 251-257, April.
    8. Li, Shuanming & Garrido, Jose, 2004. "On ruin for the Erlang(n) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 391-408, June.
    9. Albrecher, Hansjorg & Claramunt, M.Merce & Marmol, Maite, 2005. "On the distribution of dividend payments in a Sparre Andersen model with generalized Erlang(n) interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 324-334, October.
    10. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheung, Eric C.K. & Feng, Runhuan, 2013. "A unified analysis of claim costs up to ruin in a Markovian arrival risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 98-109.
    2. Cheung, Eric C.K., 2013. "Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 343-354.
    3. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    4. Feng, Runhuan, 2011. "An operator-based approach to the analysis of ruin-related quantities in jump diffusion risk models," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 304-313, March.
    5. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    6. Eric C.K. Cheung & Haibo Liu & Jae-Kyung Woo, 2015. "On the Joint Analysis of the Total Discounted Payments to Policyholders and Shareholders: Dividend Barrier Strategy," Risks, MDPI, Open Access Journal, vol. 3(4), pages 1-24, November.
    7. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:305-314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.