IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium

  • Cheung, Eric C.K.
Registered author(s):

    In a general Sparre Andersen risk model with surplus-dependent premium income, the generalization of Gerber-Shiu function proposed by Cheung et al. (2010a) is studied. A general expression for such Gerber-Shiu function is derived, and it is shown that its determination reduces to the evaluation of a transition function which is independent of the penalty function. Properties of and explicit expressions for such a transition function are derived when the surplus process is subject to (i) constant premium; (ii) a threshold dividend strategy; or (iii) credit interest. Extension of the approach is discussed for an absolute ruin model with debit interest.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V8N-5211JDG-3/2/e65cb608424a39a91d178fede7292532
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 48 (2011)
    Issue (Month): 3 (May)
    Pages: 384-397

    as
    in new window

    Handle: RePEc:eee:insuma:v:48:y:2011:i:3:p:384-397
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Zhou, Xiaowen, 2004. "When does surplus reach a certain level before ruin?," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 553-561, December.
    2. Landriault, David, 2008. "Constant dividend barrier in a risk model with interclaim-dependent claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 31-38, February.
    3. Feng, Runhuan, 2009. "On the total operating costs up to default in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 305-314, October.
    4. Li, Shuanming & Garrido, Jose, 2004. "On a class of renewal risk models with a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 691-701, December.
    5. Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Surplus analysis for a class of Coxian interclaim time distributions with applications to mixed Erlang claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 32-41, February.
    6. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    7. Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
    8. Lin, X. Sheldon & Sendova, Kristina P., 2008. "The compound Poisson risk model with multiple thresholds," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 617-627, April.
    9. Dickson, David C. M. & Hipp, Christian, 2001. "On the time to ruin for Erlang(2) risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 333-344, December.
    10. Cai, Jun & Dickson, David C. M., 2002. "On the expected discounted penalty function at ruin of a surplus process with interest," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 389-404, June.
    11. Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
    12. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    13. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:3:p:384-397. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.