IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i2p236-241.html
   My bibliography  Save this article

Neural networks approach for determining total claim amounts in insurance

Author

Listed:
  • Dalkilic, Turkan Erbay
  • Tank, Fatih
  • Kula, Kamile Sanli

Abstract

In this study, we present an approach based on neural networks, as an alternative to the ordinary least squares method, to describe the relation between the dependent and independent variables. It has been suggested to construct a model to describe the relation between dependent and independent variables as an alternative to the ordinary least squares method. A new model, which contains the month and number of payments, is proposed based on real data to determine total claim amounts in insurance as an alternative to the model suggested by Rousseeuw et al. (1984) [Rousseeuw, P., Daniels, B., Leroy, A., 1984. Applying robust regression to insurance. Insurance: Math. Econom. 3, 67-72] in view of an insurer.

Suggested Citation

  • Dalkilic, Turkan Erbay & Tank, Fatih & Kula, Kamile Sanli, 2009. "Neural networks approach for determining total claim amounts in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 236-241, October.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:236-241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00067-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Per-Johan Horgby, 1998. "Risk Classification by Fuzzy Inference," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 23(1), pages 63-82, June.
    2. Rousseeuw, P. & Daniels, B. & Leroy, A., 1984. "Applying robust regression to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 3(1), pages 67-72, January.
    3. Shapiro, Arnold F., 2002. "The merging of neural networks, fuzzy logic, and genetic algorithms," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 115-131, August.
    4. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, April.
    5. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    6. Cheng, Chi-Bin & Lee, E. Stanley, 2001. "Switching regression analysis by fuzzy adaptive network," European Journal of Operational Research, Elsevier, vol. 128(3), pages 647-663, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    2. Heng Xiong & Jie Xu & Rogemar Mamon & Yixing Zhao, 2025. "ResPoNet: A Residual Neural Network for Efficient Valuation of Large Variable Annuity Portfolios," Mathematics, MDPI, vol. 13(12), pages 1-22, June.
    3. Banghee So & Jean-Philippe Boucher & Emiliano A. Valdez, 2021. "Synthetic Dataset Generation of Driver Telematics," Risks, MDPI, vol. 9(4), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    2. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    3. Sancho Salcedo-Sanz & Leo Carro-Calvo & Mercè Claramunt & Ana Castañer & Maite Mármol, 2014. "Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms," Risks, MDPI, vol. 2(2), pages 1-14, April.
    4. Marc Sanchez-Roger & María Dolores Oliver-Alfonso & Carlos Sanchís-Pedregosa, 2019. "Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises," Mathematics, MDPI, vol. 7(11), pages 1-22, November.
    5. Liu, Ying & Li, Xiaozhong & Liu, Yinli, 2015. "The bounds of premium and optimality of stop loss insurance under uncertain random environments," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 273-278.
    6. Sancho Salcedo-Sanz & L. Carro-Calvo & Mercè Claramunt & Anna Castañer & Maite Marmol, 2013. "An Analysis of Black-box Optimization Problems in Reinsurance: Evolutionary-based Approaches," Working Papers XREAP2013-04, Xarxa de Referència en Economia Aplicada (XREAP), revised May 2013.
    7. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    8. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    9. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    10. Anthropelos, Michail & Boonen, Tim J., 2020. "Nash equilibria in optimal reinsurance bargaining," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 196-205.
    11. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    12. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    13. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    14. repec:ehu:cuader:21773 is not listed on IDEAS
    15. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Alexandra Moura & Carlos Oliveira, 2024. "Reputation risk mitigation in investment strategies," Working Papers REM 2024/0309, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    17. Rachida Hennani & Michel Terraza, 2012. "Value-at-Risk stressée chaotique d’un portefeuille bancaire," Working Papers 12-23, LAMETA, Universtiy of Montpellier, revised Sep 2012.
    18. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    19. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    20. Ketelbuters, John John & Hainaut, Donatien, 2021. "Time-Consistent Evaluation of Credit Risk with Contagion," LIDAM Discussion Papers ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:236-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.