IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v44y2009i2p315-324.html
   My bibliography  Save this article

On a dual model with a dividend threshold

Author

Listed:
  • Ng, Andrew C.Y.

Abstract

In insurance mathematics, a compound Poisson model is often used to describe the aggregate claims of the surplus process. In this paper, we consider the dual of the compound Poisson model under a threshold dividend strategy. We derive a set of two integro-differential equations satisfied by the expected total discounted dividends until ruin and show how the equations can be solved by using only one of the two integro-differential equations. The cases where profits follow an exponential or a mixture of exponential distributions are then solved and the discussion for the case of a general profit distribution follows by the use of Laplace transforms. We illustrate how the optimal threshold level that maximizes the expected total discounted dividends until ruin can be obtained, and finally we generalize the results to the case where the surplus process is a more general skip-free downwards Lévy process.

Suggested Citation

  • Ng, Andrew C.Y., 2009. "On a dual model with a dividend threshold," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 315-324, April.
  • Handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:315-324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00167-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:spr:compst:v:67:y:2008:i:1:p:21-42 is not listed on IDEAS
    2. Gerber, Hans U. & Smith, Nathaniel, 2008. "Optimal dividends with incomplete information in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 227-233, October.
    3. Avanzi, Benjamin & U. Gerber, Hans & S.W. Shiu, Elias, 2007. "Optimal dividends in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 111-123, July.
    4. Avanzi, Benjamin & Gerber, Hans U., 2008. "Optimal Dividends in the Dual Model with Diffusion," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 38(02), pages 653-667, November.
    5. Albrecher, Hansjörg & Badescu, Andrei & Landriault, David, 2008. "On the dual risk model with tax payments," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1086-1094, June.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:315-324. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.