IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v14y2020i1s1751157719303384.html
   My bibliography  Save this article

Analysis of reference and citation copying in evolving bibliographic networks

Author

Listed:
  • Pandey, Pradumn Kumar
  • Singh, Mayank
  • Goyal, Pawan
  • Mukherjee, Animesh
  • Chakrabarti, Soumen

Abstract

Extensive literature demonstrates how the copying of references (links) can lead to the emergence of various structural properties (e.g., power-law degree distribution and bipartite cores) in bibliographic and other similar directed networks. However, it is also well known that the copying process is incapable of mimicking the number of directed triangles in such networks; neither does it have the power to explain the obsolescence of older papers. In this paper, we propose RefOrCite, a new model that allows for copying of both the references from (i.e., out-neighbors of) as well as the citations to (i.e., in-neighbors of) an existing node. In contrast, the standard copying model (CP) only copies references. While retaining its spirit, RefOrCite differs from the Forest Fire (FF) model in ways that makes RefOrCite amenable to mean-field analysis for degree distribution, triangle count, and densification. Empirically, RefOrCite gives the best overall agreement with observed degree distribution, triangle count, diameter, h-index, and the growth of citations to newer papers.

Suggested Citation

  • Pandey, Pradumn Kumar & Singh, Mayank & Goyal, Pawan & Mukherjee, Animesh & Chakrabarti, Soumen, 2020. "Analysis of reference and citation copying in evolving bibliographic networks," Journal of Informetrics, Elsevier, vol. 14(1).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:1:s1751157719303384
    DOI: 10.1016/j.joi.2019.101003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157719303384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2019.101003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michal Brzezinski, 2015. "Power laws in citation distributions: evidence from Scopus," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 213-228, April.
    2. Dorogovtsev, S. N. & Mendes, J.F.F., 2013. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780199686711.
    3. Wang, Mingyang & Yu, Guang & Yu, Daren, 2009. "Effect of the age of papers on the preferential attachment in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4273-4276.
    4. Zheng Xie & Zhenzheng Ouyang & Pengyuan Zhang & Dongyun Yi & Dexing Kong, 2015. "Modeling the Citation Network by Network Cosmology," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
    5. Michaël Charles Waumans & Hugues Bersini, 2016. "Genealogical Trees of Scientific Papers," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    6. Ren, Fu-Xin & Shen, Hua-Wei & Cheng, Xue-Qi, 2012. "Modeling the clustering in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3533-3539.
    7. Caldarelli, Guido, 2007. "Scale-Free Networks: Complex Webs in Nature and Technology," OUP Catalogue, Oxford University Press, number 9780199211517.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clough, James R. & Evans, Tim S., 2016. "What is the dimension of citation space?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 235-247.
    2. Monachary Kammari & Durga Bhavani S, 2023. "Time-stamp based network evolution model for citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3723-3741, June.
    3. S. R. Goldberg & H. Anthony & T. S. Evans, 2015. "Modelling citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1577-1604, December.
    4. Rybalova, E.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Impact of sparse inter-layer coupling on the dynamics of a heterogeneous multilayer network of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Diego Garlaschelli & Maria I. Loffredo, 2007. "Effects of network topology on wealth distributions," Papers 0711.4710, arXiv.org, revised Jan 2008.
    6. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    7. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    8. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    9. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    10. Macon, Kevin T. & Mucha, Peter J. & Porter, Mason A., 2012. "Community structure in the United Nations General Assembly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 343-361.
    11. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    12. F. Daolio & M. Tomassini & K. Bitkov, 2011. "The Swiss board directors network in 2009," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(3), pages 349-359, August.
    13. Cui, Yaozu & Wang, Xingyuan & Eustace, Justine, 2014. "Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 198-207.
    14. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    15. Deyun Zhong & Lixue Wen & Lin Bi & Yulong Liu, 2024. "An Efficient and Automatic Simplification Method for Arbitrary Complex Networks in Mine Ventilation," Mathematics, MDPI, vol. 12(18), pages 1-17, September.
    16. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    17. Unnikrishnan Nair, N. & Vineshkumar, B., 2022. "Modelling informetric data using quantile functions," Journal of Informetrics, Elsevier, vol. 16(2).
    18. Wang, Zhenggang & Szeto, K.Y., 2010. "Structure profile of complex networks by a model of precipitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2318-2324.
    19. Mohammad Ariapour & Ehsan Nedaaee Oskoee, 2013. "Constructing Scale-Free Networks With A Given Cluster Coefficient," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-14.
    20. Saucan, Emil & Sreejith, R.P. & Vivek-Ananth, R.P. & Jost, Jürgen & Samal, Areejit, 2019. "Discrete Ricci curvatures for directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 347-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:1:s1751157719303384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.