IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v169y2024ics138993412400217x.html
   My bibliography  Save this article

A generalized Faustmann model with multiple carbon pools

Author

Listed:
  • Yu, Zhihan
  • Ning, Zhuo
  • Zhang, Han
  • Yang, Hongqiang
  • Chang, Sun Joseph

Abstract

In the context of “carbon neutrality”, it is crucial to accurately account for forest carbon sequestration, including living tree biomass, dead organic matter, and harvested wood products. This study develops a generalized Faustmann model, including carbon sequestration in multiple carbon pools under different assumptions of the decay modes of harvested wood products. Then, a comparative statics analysis of key parameters of dead organic matter and the harvested wood product carbon pool is conducted. The results show that the effect of the carbon pool parameters of dead organic matter and harvested wood products' on the optimal rotation usually depends on the economic environment, such as the discount rate and the time of their changes. Results of our case study indicate that considering the carbon sequestration in multiple carbon pools increases land expectation value and forest land carbon stocks. Meanwhile, different harvest wood products types and decay modes affect the optimal rotation differently. Our results demonstrate that different carbon accounting methodologies should be established for different types of harvested wood products, such as exponential decay for paper and paperboard and chi-square decay for solid wood products. It is also necessary to expand the outlets of harvested wood products in wood-based building materials and extend their half-lives.

Suggested Citation

  • Yu, Zhihan & Ning, Zhuo & Zhang, Han & Yang, Hongqiang & Chang, Sun Joseph, 2024. "A generalized Faustmann model with multiple carbon pools," Forest Policy and Economics, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:forpol:v:169:y:2024:i:c:s138993412400217x
    DOI: 10.1016/j.forpol.2024.103363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S138993412400217X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2024.103363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory S. Amacher & Markku Ollikainen & Erkki A. Koskela, 2009. "Economics of Forest Resources," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012480, December.
    2. Holtsmark, Bjart & Hoel, Michael & Holtsmark, Katinka, 2013. "Optimal harvest age considering multiple carbon pools – A comment," Journal of Forest Economics, Elsevier, vol. 19(1), pages 87-95.
    3. Asante, Patrick & Armstrong, Glen W., 2012. "Optimal forest harvest age considering carbon sequestration in multiple carbon pools: A comparative statics analysis," Journal of Forest Economics, Elsevier, vol. 18(2), pages 145-156.
    4. Susaeta, Andres, 2020. "Implications of future risk of fusiform rust on optimal forest management of even-aged slash pine plantations," Forest Policy and Economics, Elsevier, vol. 116(C).
    5. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    6. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    7. Hoel, Michael & Holtsmark, Bjart & Holtsmark, Katinka, 2014. "Faustmann and the climate," Journal of Forest Economics, Elsevier, vol. 20(2), pages 192-210.
    8. Fan Zhang & Sun Joseph Chang, 2018. "Measuring the Impact of Risk Preference on Land Valuation: Evidence from Forest Management," Land Economics, University of Wisconsin Press, vol. 94(3), pages 425-436.
    9. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    10. Olschewski, Roland & Benítez, Pablo C., 2010. "Optimizing joint production of timber and carbon sequestration of afforestation projects," Journal of Forest Economics, Elsevier, vol. 16(1), pages 1-10, January.
    11. Susaeta, Andres & Carter, Douglas R. & Chang, Sun Joseph & Adams, Damian C., 2016. "A generalized Reed model with application to wildfire risk in even-aged Southern United States pine plantations," Forest Policy and Economics, Elsevier, vol. 67(C), pages 60-69.
    12. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    13. Ekholm, Tommi, 2016. "Optimal forest rotation age under efficient climate change mitigation," Forest Policy and Economics, Elsevier, vol. 62(C), pages 62-68.
    14. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    15. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    16. Gutrich, John & Howarth, Richard B., 2007. "Carbon sequestration and the optimal management of New Hampshire timber stands," Ecological Economics, Elsevier, vol. 62(3-4), pages 441-450, May.
    17. Zhou, Wei & Gao, Lan, 2016. "The impact of carbon trade on the management of short-rotation forest plantations," Forest Policy and Economics, Elsevier, vol. 62(C), pages 30-35.
    18. West, Thales A.P. & Wilson, Chris & Vrachioli, Maria & Grogan, Kelly A., 2019. "Carbon payments for extended rotations in forest plantations: Conflicting insights from a theoretical model," Ecological Economics, Elsevier, vol. 163(C), pages 70-76.
    19. McIntosh, Michael G. & Zhang, Daowei, 2024. "Faustmann formula and its use in forest asset valuation: A review and a suggestion," Forest Policy and Economics, Elsevier, vol. 160(C).
    20. Patto, João V. & Rosa, Renato, 2022. "Adapting to frequent fires: Optimal forest management revisited," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    21. Sloggy, Matthew R. & Kling, David M. & Plantinga, Andrew J., 2020. "Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    22. Ning, Zhuo & Sun, Changyou, 2019. "Carbon sequestration and biofuel production on forestland under three stochastic prices," Forest Policy and Economics, Elsevier, vol. 109(C).
    23. Eric Marland & Kirk Stellar & Gregg Marland, 2010. "A distributed approach to accounting for carbon in wood products," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 71-91, January.
    24. Hongqiang Yang & Xiaobiao Zhang, 2016. "A Rethinking of the Production Approach in IPCC: Its Objectiveness in China," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
    25. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    26. G. Cornelis van Kooten, 2023. "Determining optimal forest rotation ages and carbon offset credits: Accounting for post‐harvest carbon storehouses," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(2), pages 255-272, June.
    27. Manley, Bruce, 2013. "How does real option value compare with Faustmann value in the context of the New Zealand Emissions Trading Scheme?," Forest Policy and Economics, Elsevier, vol. 30(C), pages 14-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    2. Long, Yizhu & Zhu, Zhen & Hong, Yanzhen & Gong, Zhiwen & Li, Hua & Zhang, Han, 2024. "The effect of carbon taxes and subsidies on forest carbon sequestration in China," Forest Policy and Economics, Elsevier, vol. 169(C).
    3. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    4. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    5. Hoel, Michael & Holtsmark, Bjart & Holtsmark, Katinka, 2014. "Faustmann and the climate," Journal of Forest Economics, Elsevier, vol. 20(2), pages 192-210.
    6. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    7. Ning, Zhuo & Hou, Yuke & Xu, Xia, 2024. "Optimized strategies for nitrogen fertilizer application in Populus plantations in the context of climate change mitigation," Forest Policy and Economics, Elsevier, vol. 159(C).
    8. Zhou, Wei & Gao, Lan, 2016. "The impact of carbon trade on the management of short-rotation forest plantations," Forest Policy and Economics, Elsevier, vol. 62(C), pages 30-35.
    9. Parkatti, Vesa-Pekka & Suominen, Antti & Tahvonen, Olli & Malo, Pekka, 2024. "Assessing economic benefits and costs of carbon sinks in boreal rotation forestry," Forest Policy and Economics, Elsevier, vol. 166(C).
    10. Susaeta, Andres & Adams, Damian C. & Gonzalez-Benecke, Carlos, 2017. "Economic vulnerability of southern US slash pine forests to climate change," Journal of Forest Economics, Elsevier, vol. 28(C), pages 18-32.
    11. Rørstad, Per Kristian, 2022. "Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does," Ecological Economics, Elsevier, vol. 199(C).
    12. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    13. O’Donoghue, Cathal & O’Fatharta, Eoin & Geoghegan, Cathal & Ryan, Mary, 2024. "Farmland afforestation: Forest optimal rotation ages across discrete optimisation objectives," Land Use Policy, Elsevier, vol. 139(C).
    14. Szajkó, Gabriella & Rácz, Viktor József & Kis, András, 2024. "The role of price incentives in enhancing carbon sequestration in the forestry sector of Hungary," Forest Policy and Economics, Elsevier, vol. 158(C).
    15. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.
    16. Moeller, Jonas C. & Susaeta, Andres & Deegen, Peter & Sharma, Ajay, 2024. "Profitability analysis of southern plantations through timber alone or timber and carbon integration in pine-sweetgum mixes," Forest Policy and Economics, Elsevier, vol. 161(C).
    17. Hou, Guolong & Delang, Claudio O. & Lu, Xixi & Olschewski, Roland, 2020. "Optimizing rotation periods of forest plantations: The effects of carbon accounting regimes," Forest Policy and Economics, Elsevier, vol. 118(C).
    18. Loisel, Patrice, 2020. "Under the risk of destructive event, are there differences between timber income based and carbon sequestration based silviculture?," Forest Policy and Economics, Elsevier, vol. 120(C).
    19. Isaac-Renton, M. & Moore, B. & Degner, J. & Bealle Statland, C. & Bogdanski, B. & Sun, L. & Stoehr, M., 2025. "Economic gain of genetically-selected coastal Douglas-fir: Timber, log and carbon value at varying planting densities," Forest Policy and Economics, Elsevier, vol. 171(C).
    20. Manley, Bruce, 2023. "Impact of carbon price on the relative profitability of production forestry and permanent forestry for New Zealand plantations," Forest Policy and Economics, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:169:y:2024:i:c:s138993412400217x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.