IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v18y2012i2p145-156.html
   My bibliography  Save this article

Optimal forest harvest age considering carbon sequestration in multiple carbon pools: A comparative statics analysis

Author

Listed:
  • Asante, Patrick
  • Armstrong, Glen W.

Abstract

We present an analytical model for determination of the economically optimal harvest age of a forest stand considering timber value, and the value of carbon fluxes in living biomass, dead organic matter, and wood products pools. Through comparative statics analysis, we find that consideration of timber value and fluxes in biomass carbon increase harvest age relative to the timber only solution, and that the effect on optimal harvest age of incorporating fluxes in the dead organic matter and wood products pools is indeterminate.

Suggested Citation

  • Asante, Patrick & Armstrong, Glen W., 2012. "Optimal forest harvest age considering carbon sequestration in multiple carbon pools: A comparative statics analysis," Journal of Forest Economics, Elsevier, vol. 18(2), pages 145-156.
  • Handle: RePEc:eee:foreco:v:18:y:2012:i:2:p:145-156
    DOI: 10.1016/j.jfe.2011.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689911000778
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:eee:ecomod:v:220:y:2009:i:4:p:480-504 is not listed on IDEAS
    2. Glen W. Armstrong & William E. Phillips, 1989. "The Optimal Timing of Land Use Changes From Forestry to Agriculture," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 37(1), pages 125-134, March.
    3. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    4. Andrew Stainback, G. & Alavalapati, Janaki R.R., 2002. "Economic analysis of slash pine forest carbon sequestration in the southern U. S," Journal of Forest Economics, Elsevier, vol. 8(2), pages 105-117.
    5. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    6. Asante, Patrick & Armstrong, Glen W. & Adamowicz, Wiktor L., 2011. "Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter," Journal of Forest Economics, Elsevier, vol. 17(1), pages 3-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holtsmark, Bjart & Hoel, Michael & Holtsmark, Katinka, 2013. "Optimal harvest age considering multiple carbon pools – A comment," Journal of Forest Economics, Elsevier, vol. 19(1), pages 87-95.
    2. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    3. Hoel, Michael & Holtsmark, Bjart & Holtsmark, Katinka, 2014. "Faustmann and the climate," Journal of Forest Economics, Elsevier, vol. 20(2), pages 192-210.
    4. Zhou, Wei & Gao, Lan, 2016. "The impact of carbon trade on the management of short-rotation forest plantations," Forest Policy and Economics, Elsevier, vol. 62(C), pages 30-35.
    5. Yu, Jinna & Yao, Shunbo & Zhang, Bisheng, 2014. "Designing afforestation subsidies that account for the benefits of carbon sequestration: A case study using data from China's Loess Plateau," Journal of Forest Economics, Elsevier, vol. 20(1), pages 65-76.
    6. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    7. repec:eee:forpol:v:85:y:2017:i:p1:p:124-134 is not listed on IDEAS

    More about this item

    Keywords

    Optimal rotation; Boreal forest; Carbon market;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q22 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Fishery
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:18:y:2012:i:2:p:145-156. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.