IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p1287-1295.html
   My bibliography  Save this article

Exergoeconomic evaluation of an ethanol-fueled solid oxide fuel cell power plant

Author

Listed:
  • Casas Ledón, Yannay
  • Arteaga-Perez, Luis E.
  • Toledo, Juan
  • Dewulf, Jo

Abstract

A SOFC (solid oxide fuel cell) system integrated with an ethanol steam reforming unit is evaluated using exergoeconomic analysis. The exergy destruction cost, total production cost, relative cost difference, exergoeconomic factor and thermoeconomic cost of electricity are studied. The TCOE (thermoeconomic cost of electricity) is compared with electricity cost from similar processes and fuels. A sensitivity analysis has been carried out in order to have a good insight into SOFC power plant performance, focusing on ethanol steam reformer temperature (823 < TESR < 973 K), SOFC stack unit cost (1500–400 $ kW) and fuel price (0.002 < ethanol price < 0.01 $ MJ−1). Results suggest that the SOFC unit constitutes the most important component in the process. A reduction in the investment cost and in exergy destruction within the stack may reduce the total production cost (Ctot), total investment costs (Ztot) and exergy destruction cost (CD) by 18%, 73% and 19% respectively, as well as the electricity cost (TCOE) by 21%. The higher production cost corresponds to higher ethanol price, due to the specific exergy cost of streams. In the best scenario, the electricity cost using ethanol as feedstock reaches 0.04 $ kWh−1, which is comparable and competitive with natural gas (0.06 $ kWh−1) using SOFC technology.

Suggested Citation

  • Casas Ledón, Yannay & Arteaga-Perez, Luis E. & Toledo, Juan & Dewulf, Jo, 2015. "Exergoeconomic evaluation of an ethanol-fueled solid oxide fuel cell power plant," Energy, Elsevier, vol. 93(P2), pages 1287-1295.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1287-1295
    DOI: 10.1016/j.energy.2015.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215014048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandiglio, M. & Lanzini, A. & Leone, P. & Santarelli, M. & Borchiellini, R., 2013. "Thermoeconomic analysis of large solid oxide fuel cell plants: Atmospheric vs. pressurized performance," Energy, Elsevier, vol. 55(C), pages 142-155.
    2. Casas-Ledon, Yannay & Arteaga-Perez, Luis E. & Dewulf, Jo & Morales, Mayra C. & Rosa, Elena & Peralta-Suáreza, Luis M. & Van Langenhove, Herman, 2014. "Health external costs associated to the integration of solid oxide fuel cell in a sugar–ethanol factory," Applied Energy, Elsevier, vol. 113(C), pages 1283-1292.
    3. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    4. Santin, Marco & Traverso, Alberto & Magistri, Loredana & Massardo, Aristide, 2010. "Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels," Energy, Elsevier, vol. 35(2), pages 1077-1083.
    5. Mazzucco, Andrea & Rokni, Masoud, 2014. "Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification," Energy, Elsevier, vol. 76(C), pages 114-129.
    6. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    7. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    2. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    3. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    4. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    2. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    3. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    4. Saebea, Dang & Magistri, Loredana & Massardo, Aristide & Arpornwichanop, Amornchai, 2017. "Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management," Energy, Elsevier, vol. 127(C), pages 743-755.
    5. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    6. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.
    7. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    8. Khani, Leyla & Mahmoudi, S. Mohammad S. & Chitsaz, Ata & Rosen, Marc A., 2016. "Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell," Energy, Elsevier, vol. 94(C), pages 64-77.
    9. Gadsbøll, Rasmus Østergaard & Thomsen, Jesper & Bang-Møller, Christian & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2017. "Solid oxide fuel cells powered by biomass gasification for high efficiency power generation," Energy, Elsevier, vol. 131(C), pages 198-206.
    10. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    11. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    12. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    13. Saebea, Dang & Authayanun, Suthida & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2016. "Effect of anode–cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system," Energy, Elsevier, vol. 94(C), pages 218-232.
    14. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    15. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization," Applied Energy, Elsevier, vol. 204(C), pages 1148-1162.
    16. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    17. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    18. Yan, Linbo & Yue, Guangxi & He, Boshu, 2015. "Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system," Energy, Elsevier, vol. 93(P2), pages 1778-1787.
    19. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2018. "Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems," Applied Energy, Elsevier, vol. 220(C), pages 944-961.
    20. Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1287-1295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.