IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp903-910.html
   My bibliography  Save this article

Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar

Author

Listed:
  • Zhang, Xiong
  • Zhang, Shihong
  • Yang, Haiping
  • Shao, Jingai
  • Chen, Yingquan
  • Feng, Ye
  • Wang, Xianhua
  • Chen, Hanping

Abstract

In order to enhance CO2 adsorption capacity of rice husk char, raw rice husk was pre-deashed by HF (hydrofluoric acid) and used as precursor for preparing nitrogen-enriched biochar with high temperature ammonia treatment in this work. The effects of rice husk pre-deashing on the physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar were investigated. The results show that the micropore surface area of the nitrogen-enriched biochar derived from pre-deashed rice husk (labeled as HF-N-Char) is 545.74 m2/g, more than that of the nitrogen-enriched biochar derived from raw rice husk (labeled as N-Char, and its micropore surface area is 303.10 m2/g). The nitrogen content of HF-N-Char is 2.53 wt%, much higher than that of N-Char (1.64 wt%). It indicates that the deashing treatment not only improves the pore structure of nitrogen-enriched biochar, but also enhances the introduction of nitrogen-containing functional groups. In addition, the CO2 adsorption capacity of HF-N-Char (77.9 mg/g at 30 °C and 18.1 mg/g at 120 °C) is larger than that of N-Char (59.5 mg/g at 30 °C and 15.1 mg/g at 120 °C). The results may be helpful for the development of novel cost-effective CO2 adsorbents.

Suggested Citation

  • Zhang, Xiong & Zhang, Shihong & Yang, Haiping & Shao, Jingai & Chen, Yingquan & Feng, Ye & Wang, Xianhua & Chen, Hanping, 2015. "Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar," Energy, Elsevier, vol. 91(C), pages 903-910.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:903-910
    DOI: 10.1016/j.energy.2015.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannidou, O. & Zabaniotou, A., 2007. "Agricultural residues as precursors for activated carbon production--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1966-2005, December.
    2. Kwak, No-Sang & Lee, Ji Hyun & Lee, In Young & Jang, Kyung Ryoung & Shim, Jae-Goo, 2012. "A study of the CO2 capture pilot plant by amine absorption," Energy, Elsevier, vol. 47(1), pages 41-46.
    3. Bounaceur, Roda & Lape, Nancy & Roizard, Denis & Vallieres, Cécile & Favre, Eric, 2006. "Membrane processes for post-combustion carbon dioxide capture: A parametric study," Energy, Elsevier, vol. 31(14), pages 2556-2570.
    4. Pfaff, I. & Oexmann, J. & Kather, A., 2010. "Optimised integration of post-combustion CO2 capture process in greenfield power plants," Energy, Elsevier, vol. 35(10), pages 4030-4041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Germán Álvarez-López & Alejandra María Múnera & Juan G. Villegas, 2023. "Multicriteria Decision-Making Tools for the Selection of Biomasses as Supplementary Cementitious Materials," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    2. Md Sumon Reza & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Md Naimul Haque & Shafi Noor Islam & Md Aslam Hossain & Mahbub Hassan & Hridoy Roy & Md Shahinoor Islam, 2023. "Advanced Applications of Carbonaceous Materials in Sustainable Water Treatment, Energy Storage, and CO 2 Capture: A Comprehensive Review," Sustainability, MDPI, vol. 15(11), pages 1-56, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    2. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    3. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    4. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    6. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    7. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    8. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    9. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    10. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    12. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    13. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
    14. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    15. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    16. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    17. Rafał Ślefarski, 2019. "Study on the Combustion Process of Premixed Methane Flames with CO 2 Dilution at Elevated Pressures," Energies, MDPI, vol. 12(3), pages 1-17, January.
    18. Vahid Mortezaeikia & Omid Tavakoli & Reza Yegani & Mohammadali Faramarzi, 2016. "Cyanobacterial CO 2 biofixation in batch and semi‐continuous cultivation, using hydrophobic and hydrophilic hollow fiber membrane photobioreactors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(2), pages 218-231, April.
    19. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    20. Han, Siyu & Meng, Yuan & Aihemaiti, Aikelaimu & Gao, Yuchen & Ju, Tongyao & Xiang, Honglin & Jiang, Jianguo, 2022. "Biogas upgrading with various single and blended amines solutions: Capacities and kinetics," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:903-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.