IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v47y2012i1p41-46.html
   My bibliography  Save this article

A study of the CO2 capture pilot plant by amine absorption

Author

Listed:
  • Kwak, No-Sang
  • Lee, Ji Hyun
  • Lee, In Young
  • Jang, Kyung Ryoung
  • Shim, Jae-Goo

Abstract

A pilot plant for CO2 recovery of 2 ton-CO2/day from flue gas emitted from a 500 MW coal fired power plant was tested with aqueous amine absorbents. Based on a chemical absorption/regeneration process with 30 wt% aqueous monoethanolamine (MEA) solution, we studied the CO2 recovery as a function of flow rate and input location of absorbent, pressure and temperature of stripper, and temperature of flue gas. Experimental data include the temperature profile of the absorber/stripper and CO2 lean/rich loading values, which remained stable during the operation. We evaluated the energy requirement for regeneration of aqueous amine and the degree of CO2 removal. While regeneration energy of aqueous amine increased with an increase in flue gas temperature and stripper pressure, it decreased with an increase in injection height of absorbent. The optimum point in flow rate of absorbent was 1300 kg/h in 350 Sm3/h flue gas. The regeneration energy using 30 wt% MEA solution was 3.92 GJ/ton CO2 in 90% CO2 removal, flue gas temperature of 40 °C, stripper pressure of 0.5 kgf/cm2 and L/G ratio of 3.7 kg/Sm3. In addition, corrosion rate of the pilot plant were measured in six points. It is the largest as 79.11 mpy in the bottom of the stripper tower.

Suggested Citation

  • Kwak, No-Sang & Lee, Ji Hyun & Lee, In Young & Jang, Kyung Ryoung & Shim, Jae-Goo, 2012. "A study of the CO2 capture pilot plant by amine absorption," Energy, Elsevier, vol. 47(1), pages 41-46.
  • Handle: RePEc:eee:energy:v:47:y:2012:i:1:p:41-46
    DOI: 10.1016/j.energy.2012.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212005464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiyan & Liu, Yanxing & Cao, Yuhao & Li, Zhengyuan & Hou, Jiachen & Gou, Xiang, 2023. "Parametric study and optimization of MEA-based carbon capture for a coal and biomass co-firing power plant," Renewable Energy, Elsevier, vol. 205(C), pages 838-850.
    2. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2016. "Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy," Energy, Elsevier, vol. 95(C), pages 324-345.
    3. Zhang, Xiong & Zhang, Shihong & Yang, Haiping & Shao, Jingai & Chen, Yingquan & Feng, Ye & Wang, Xianhua & Chen, Hanping, 2015. "Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar," Energy, Elsevier, vol. 91(C), pages 903-910.
    4. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    5. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    6. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
    7. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    8. Park, Sangwon & Song, Kyungsun & Jo, Hwanju, 2017. "Laboratory-scale experiment on a novel mineralization-based method of CO2 capture using alkaline solution," Energy, Elsevier, vol. 124(C), pages 589-598.
    9. Choi, Jaeuk & Cho, Habin & Yun, Seokwon & Jang, Mun-Gi & Oh, Se-Young & Binns, Michael & Kim, Jin-Kuk, 2019. "Process design and optimization of MEA-based CO2 capture processes for non-power industries," Energy, Elsevier, vol. 185(C), pages 971-980.
    10. Han, Siyu & Meng, Yuan & Aihemaiti, Aikelaimu & Gao, Yuchen & Ju, Tongyao & Xiang, Honglin & Jiang, Jianguo, 2022. "Biogas upgrading with various single and blended amines solutions: Capacities and kinetics," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:47:y:2012:i:1:p:41-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.