IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i10p4030-4041.html
   My bibliography  Save this article

Optimised integration of post-combustion CO2 capture process in greenfield power plants

Author

Listed:
  • Pfaff, I.
  • Oexmann, J.
  • Kather, A.

Abstract

Newly built (greenfield) power plant offer the advantage of optimised integration measures to reduce the efficiency penalty associated with the application of a post-combustion CO2 capture process by wet chemical absorption. Especially, the integration of waste heat from the desorber overhead condenser of the CO2 capture unit (CCU) and from the CO2 compressor into the water-steam-cycle of the power plant offers optimisation potential.

Suggested Citation

  • Pfaff, I. & Oexmann, J. & Kather, A., 2010. "Optimised integration of post-combustion CO2 capture process in greenfield power plants," Energy, Elsevier, vol. 35(10), pages 4030-4041.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4030-4041
    DOI: 10.1016/j.energy.2010.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421000318X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Ismael & Zorraquino, J.V.M, 2002. "Energy and environmental optimization in thermoelectrical generating processes—application of a carbon dioxide capture system," Energy, Elsevier, vol. 27(6), pages 607-623.
    2. Möller, Björn Fredriksson & Assadi, Mohsen & Potts, Ian, 2006. "CO2-free power generation in combined cycles—Integration of post-combustion separation of carbon dioxide in the steam cycle," Energy, Elsevier, vol. 31(10), pages 1520-1532.
    3. Pellegrini, G. & Strube, R. & Manfrida, G., 2010. "Comparative study of chemical absorbents in postcombustion CO2 capture," Energy, Elsevier, vol. 35(2), pages 851-857.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
    2. Chmielniak, Tadeusz & Lepszy, Sebastian & Wójcik, Katarzyna, 2012. "Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant," Energy, Elsevier, vol. 45(1), pages 125-133.
    3. Theunissen, Ton & Golombok, Mike & Brouwers, J.J.H. (Bert) & Bansal, Gagan & van Benthum, Rob, 2011. "Liquid CO2 droplet extraction from gases," Energy, Elsevier, vol. 36(5), pages 2961-2967.
    4. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Goswami, Rohtash & Das, Ranjan, 2020. "Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons," Renewable Energy, Elsevier, vol. 148(C), pages 1280-1291.
    6. Jeon, Eui-Chan & Myeong, Soojeong & Sa, Jae-Whan & Kim, Jinsu & Jeong, Jae-Hak, 2010. "Greenhouse gas emission factor development for coal-fired power plants in Korea," Applied Energy, Elsevier, vol. 87(1), pages 205-210, January.
    7. Abid Salam Farooqi & Raihan Mahirah Ramli & Serene Sow Mun Lock & Noorhidayah Hussein & Muhammad Zubair Shahid & Ahmad Salam Farooqi, 2022. "Simulation of Natural Gas Treatment for Acid Gas Removal Using the Ternary Blend of MDEA, AEEA, and NMP," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    8. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Alibakhsh Kasaeian, 2023. "Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9439-9484, September.
    9. Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
    10. Li, Huiyi & Gao, Jianmin & Du, Qian & Shan, Jingjing & Zhang, Yu & Wu, Shaohua & Wang, Zhijiang, 2021. "Direct CO2electroreduction from NH4HCO3electrolyte to syngas on bromine-modified Ag catalyst," Energy, Elsevier, vol. 216(C).
    11. Lee, Zhi Hua & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2012. "Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2599-2609.
    12. Thavasi, V. & Ramakrishna, S., 2009. "Asia energy mixes from socio-economic and environmental perspectives," Energy Policy, Elsevier, vol. 37(11), pages 4240-4250, November.
    13. Descamps, C. & Bouallou, C. & Kanniche, M., 2008. "Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal," Energy, Elsevier, vol. 33(6), pages 874-881.
    14. Kotowicz, Janusz & Bartela, Łukasz, 2010. "The influence of economic parameters on the optimal values of the design variables of a combined cycle plant," Energy, Elsevier, vol. 35(2), pages 911-919.
    15. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.
    16. Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2016. "Screening of conventional ionic liquids for carbon dioxide capture and separation," Applied Energy, Elsevier, vol. 162(C), pages 1160-1170.
    17. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    18. Ali, Usman & Font-Palma, Carolina & Nikpey Somehsaraei, Homam & Mansouri Majoumerd, Mohammad & Akram, Muhammad & Finney, Karen N. & Best, Thom & Mohd Said, Nassya B. & Assadi, Mohsen & Pourkashanian, , 2017. "Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture," Energy, Elsevier, vol. 126(C), pages 475-487.
    19. Zhang, Minkai & Guo, Yincheng, 2017. "Regeneration energy analysis of NH3-based CO2 capture process integrated with a flow-by capacitive ion separation device," Energy, Elsevier, vol. 125(C), pages 178-185.
    20. Fazlollahi, Farhad & Bown, Alex & Ebrahimzadeh, Edris & Baxter, Larry L., 2015. "Design and analysis of the natural gas liquefaction optimization process- CCC-ES (energy storage of cryogenic carbon capture)," Energy, Elsevier, vol. 90(P1), pages 244-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4030-4041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.