IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2961-2967.html
   My bibliography  Save this article

Liquid CO2 droplet extraction from gases

Author

Listed:
  • Theunissen, Ton
  • Golombok, Mike
  • Brouwers, J.J.H. (Bert)
  • Bansal, Gagan
  • van Benthum, Rob

Abstract

Efficient mechanical separation of CO2 from combustion effluent affects the utilization potential of high CO2 producers such as coal. Novel mechanical separations of condensing CO2 from gas flows need to be able to capture the small condensed droplets below the cyclone cut-off limit of 20 μm. We describe the thermodynamics, the energy costs and droplet formation of CO2 phase separation from combustion effluent and natural gas. We report the first measurements of condensing CO2 droplet sizes from gas. This shows that application of homogeneous condensation of CO2 yields much smaller droplets in flue gas (N2/CO2) than from contaminated natural gas (CH4/CO2). These small droplets can only be efficiently removed at high throughputs using the novel centrifugal method we describe. Such mechanical separations are preferable to the current standard chemical methods because of the much lower environmental footprint.

Suggested Citation

  • Theunissen, Ton & Golombok, Mike & Brouwers, J.J.H. (Bert) & Bansal, Gagan & van Benthum, Rob, 2011. "Liquid CO2 droplet extraction from gases," Energy, Elsevier, vol. 36(5), pages 2961-2967.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2961-2967
    DOI: 10.1016/j.energy.2011.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Cyranoski, 2007. "China struggles to square growth and emissions," Nature, Nature, vol. 446(7139), pages 954-955, April.
    2. Pellegrini, G. & Strube, R. & Manfrida, G., 2010. "Comparative study of chemical absorbents in postcombustion CO2 capture," Energy, Elsevier, vol. 35(2), pages 851-857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenchao Yang & Shuhong Li & Xianliang Li & Yuanyuan Liang & Xiaosong Zhang, 2015. "Analysis of a New Liquefaction Combined with Desublimation System for CO 2 Separation Based on N 2 /CO 2 Phase Equilibrium," Energies, MDPI, vol. 8(9), pages 1-14, September.
    2. van Benthum, R.J. & van Kemenade, H.P. & Brouwers, J.J.H. & Golombok, M., 2012. "Condensed Rotational Separation of CO2," Applied Energy, Elsevier, vol. 93(C), pages 457-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    2. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
    3. Chmielniak, Tadeusz & Lepszy, Sebastian & Wójcik, Katarzyna, 2012. "Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant," Energy, Elsevier, vol. 45(1), pages 125-133.
    4. Zhang, Minkai & Guo, Yincheng, 2017. "Regeneration energy analysis of NH3-based CO2 capture process integrated with a flow-by capacitive ion separation device," Energy, Elsevier, vol. 125(C), pages 178-185.
    5. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
    6. Mores, Patricia & Scenna, Nicolás & Mussati, Sergio, 2012. "CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process," Energy, Elsevier, vol. 45(1), pages 1042-1058.
    7. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    9. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    10. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
    11. Abid Salam Farooqi & Raihan Mahirah Ramli & Serene Sow Mun Lock & Noorhidayah Hussein & Muhammad Zubair Shahid & Ahmad Salam Farooqi, 2022. "Simulation of Natural Gas Treatment for Acid Gas Removal Using the Ternary Blend of MDEA, AEEA, and NMP," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    12. Harkin, Trent & Hoadley, Andrew & Hooper, Barry, 2012. "Using multi-objective optimisation in the design of CO2 capture systems for retrofit to coal power stations," Energy, Elsevier, vol. 41(1), pages 228-235.
    13. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    14. Feng Hao, 2014. "The effect of economic affluence and ecological degradation on Chinese environmental concern: a multilevel analysis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(2), pages 123-131, June.
    15. Li, Huiyi & Gao, Jianmin & Du, Qian & Shan, Jingjing & Zhang, Yu & Wu, Shaohua & Wang, Zhijiang, 2021. "Direct CO2electroreduction from NH4HCO3electrolyte to syngas on bromine-modified Ag catalyst," Energy, Elsevier, vol. 216(C).
    16. Reddick, Christopher & Sorin, Mikhail & Sapoundjiev, Hristo & Aidoun, Zine, 2016. "Carbon capture simulation using ejectors for waste heat upgrading," Energy, Elsevier, vol. 100(C), pages 251-261.
    17. Xu, Cheng & Li, Xiaosa & Xin, Tuantuan & Liu, Xin & Xu, Gang & Wang, Min & Yang, Yongping, 2019. "A thermodynamic analysis and economic assessment of a modified de-carbonization coal-fired power plant incorporating a supercritical CO2 power cycle and an absorption heat transformer," Energy, Elsevier, vol. 179(C), pages 30-45.
    18. Lee, Zhi Hua & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2012. "Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2599-2609.
    19. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    20. Delgado, Montserrat Rodriguez & Arean, Carlos Otero, 2011. "Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies," Energy, Elsevier, vol. 36(8), pages 5286-5291.

    More about this item

    Keywords

    CO2 capture; Droplets; Mechanical separations;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2961-2967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.