IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v100y2016icp251-261.html
   My bibliography  Save this article

Carbon capture simulation using ejectors for waste heat upgrading

Author

Listed:
  • Reddick, Christopher
  • Sorin, Mikhail
  • Sapoundjiev, Hristo
  • Aidoun, Zine

Abstract

Reducing the valuable energy consumption of solvent regeneration remains the biggest technical challenge to full-scale deployment of post-combustion carbon capture. Aspen Plus modeling is applied to validate the new application of ejectors to upgrade external waste heat in the conventional absorption and desorption process for carbon capture. In this application, ejectors upgrade external waste heat with the goal of reducing the quantity of valuable turbine steam required to regenerate the solvent. The energy consumption of the base case capture process in this study is within the range of published data. The reference solvent is 20% wt. MEA (monoethanolamine). Three strategies for producing the ejector secondary steam are evaluated. Producing the ejector secondary steam from either the stripping column condensate or from the lean solvent are viable options, showing respectively valuable energy savings of 10 and 14%. In both cases the potential valuable energy reductions are limited by the finite amount of condensate available to create the ejector primary steam. Using the rich solvent stream to produce the ejector secondary stream does not reduce the valuable energy consumption. The choice of preheating the ejector primary fluid by means of waste heat or by heat integration is also discussed.

Suggested Citation

  • Reddick, Christopher & Sorin, Mikhail & Sapoundjiev, Hristo & Aidoun, Zine, 2016. "Carbon capture simulation using ejectors for waste heat upgrading," Energy, Elsevier, vol. 100(C), pages 251-261.
  • Handle: RePEc:eee:energy:v:100:y:2016:i:c:p:251-261
    DOI: 10.1016/j.energy.2016.01.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216300366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddick, Christopher & Sorin, Mikhail & Rheault, Fernand, 2014. "Energy savings in CO2 (carbon dioxide) capture using ejectors for waste heat upgrading," Energy, Elsevier, vol. 65(C), pages 200-208.
    2. Zhang, Kefang & Liu, Zhongliang & Wang, Yuanya & Li, Yanxia & Li, Qingfang & Zhang, Jian & Liu, Haili, 2014. "Flash evaporation and thermal vapor compression aided energy saving CO2 capture systems in coal-fired power plant," Energy, Elsevier, vol. 66(C), pages 556-568.
    3. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    4. Duan, Liqiang & Zhao, Mingde & Yang, Yongping, 2012. "Integration and optimization study on the coal-fired power plant with CO2 capture using MEA," Energy, Elsevier, vol. 45(1), pages 107-116.
    5. Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
    6. Pellegrini, G. & Strube, R. & Manfrida, G., 2010. "Comparative study of chemical absorbents in postcombustion CO2 capture," Energy, Elsevier, vol. 35(2), pages 851-857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Neale, James R., 2016. "Appropriate placement of vapour recompression in ultra-low energy industrial milk evaporation systems using Pinch Analysis," Energy, Elsevier, vol. 116(P2), pages 1269-1281.
    2. Ashrafi, Omid & Bashiri, Hamed & Esmaeili, Amin & Sapoundjiev, Hristo & Navarri, Philippe, 2018. "Ejector integration for the cost effective design of the Selexol™ process," Energy, Elsevier, vol. 162(C), pages 380-392.
    3. Poirier, Michel & Giguère, Daniel & Sapoundjiev, Hristo, 2018. "Experimental parametric investigation of vapor ejector for refrigeration applications," Energy, Elsevier, vol. 162(C), pages 1287-1300.
    4. Wang, Chen & Wang, Lei & Wang, Xinli & Zhao, Hongxia, 2017. "Design and numerical investigation of an adaptive nozzle exit position ejector in multi-effect distillation desalination system," Energy, Elsevier, vol. 140(P1), pages 673-681.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    2. Zhang, Minkai & Guo, Yincheng, 2017. "Regeneration energy analysis of NH3-based CO2 capture process integrated with a flow-by capacitive ion separation device," Energy, Elsevier, vol. 125(C), pages 178-185.
    3. Kefang Zhang & Zhongliang Liu & Zhaoliang Wang & Yanxia Li, 2016. "Specific exergy consumption as an index for steam extraction scheme selection for CO 2 capture systems in coal‐fired power plants," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(2), pages 275-287, April.
    4. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    6. Delgado, Montserrat Rodriguez & Arean, Carlos Otero, 2011. "Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies," Energy, Elsevier, vol. 36(8), pages 5286-5291.
    7. Zhao, Bingtao & Su, Yaxin & Cui, Guomin, 2016. "Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: Process intensification and performance characteristics," Energy, Elsevier, vol. 102(C), pages 106-117.
    8. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    9. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    10. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    11. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    12. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    13. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    14. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    15. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    16. Ronald Ssebadduka & Kyuro Sasaki & Yuichi Sugai, 2020. "An Analysis of the Possible Financial Savings of a Carbon Capture Process through Carbon Dioxide Absorption and Geological Dumping," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 266-270.
    17. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
    18. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    19. Chmielniak, Tadeusz & Lepszy, Sebastian & Wójcik, Katarzyna, 2012. "Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant," Energy, Elsevier, vol. 45(1), pages 125-133.
    20. Liqiang Xu & Qiufang Cui & Te Tu & Shuo Liu & Long Ji & Shuiping Yan, 2020. "Waste heat recovery from the stripped gas in carbon capture process by membrane technology: Hydrophobic and hydrophilic organic membrane cases," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 421-435, April.

    More about this item

    Keywords

    CO2 capture; Post-combustion; Ejector; Waste heat; MEA; Aspen Plus;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:100:y:2016:i:c:p:251-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.