IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p244-257.html
   My bibliography  Save this article

Design and analysis of the natural gas liquefaction optimization process- CCC-ES (energy storage of cryogenic carbon capture)

Author

Listed:
  • Fazlollahi, Farhad
  • Bown, Alex
  • Ebrahimzadeh, Edris
  • Baxter, Larry L.

Abstract

The CCC (cryogenic carbon capture) process provides energy- and cost-efficient carbon capture and can be configured to provide an energy storage system using an open loop NG (natural gas) refrigeration system. This system stores energy during non-peak times by liquefying and storing natural gas to be used as a refrigerant. This investigation compares four different natural gas liquefaction processes simulated by Aspen HYSYS as incorporated as part of the CCC-ES process. In these processes, LNG vaporizes in the CCC process and the cold vapors return through the LNG heat exchangers exchanging sensible heat with the incoming flows. Aside from this difference, this investigation uses process designs similar to traditional LNG processes. The simulations meaningfully compare these alternative liquefaction options, eliminating differences in assumptions and process details inherent in comparing processes simulated by different authors or different codes. The comparisons include costs and energy performance with individually optimized processes, each operating at three operating conditions: energy storage, energy recovery, and balanced operation. Given similar quality turbomachinery, efficient heat exchangers in particular reduce energy input requirements and maximize energy savings and capital costs, including heat exchangers used to cool compressed gases.

Suggested Citation

  • Fazlollahi, Farhad & Bown, Alex & Ebrahimzadeh, Edris & Baxter, Larry L., 2015. "Design and analysis of the natural gas liquefaction optimization process- CCC-ES (energy storage of cryogenic carbon capture)," Energy, Elsevier, vol. 90(P1), pages 244-257.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:244-257
    DOI: 10.1016/j.energy.2015.05.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
    2. Remeljej, C.W. & Hoadley, A.F.A., 2006. "An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes," Energy, Elsevier, vol. 31(12), pages 2005-2019.
    3. Xu, Xiongwen & Liu, Jinping & Cao, Le & Pang, Weiqiang, 2014. "Automatically varying the composition of a mixed refrigerant solution for single mixed refrigerant LNG (liquefied natural gas) process at changing working conditions," Energy, Elsevier, vol. 64(C), pages 931-941.
    4. Khan, Mohd Shariq & Lee, Moonyong, 2013. "Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints," Energy, Elsevier, vol. 49(C), pages 146-155.
    5. Mokarizadeh Haghighi Shirazi, M. & Mowla, D., 2010. "Energy optimization for liquefaction process of natural gas in peak shaving plant," Energy, Elsevier, vol. 35(7), pages 2878-2885.
    6. Bounaceur, Roda & Lape, Nancy & Roizard, Denis & Vallieres, Cécile & Favre, Eric, 2006. "Membrane processes for post-combustion carbon dioxide capture: A parametric study," Energy, Elsevier, vol. 31(14), pages 2556-2570.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lin & Sasaki, Hirotoshi & Watanabe, Tsutomu & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2017. "Production strategy for oceanic methane hydrate extraction and power generation with Carbon Capture and Storage (CCS)," Energy, Elsevier, vol. 126(C), pages 256-272.
    2. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Powell, Kody M., 2018. "Performance comparison of low temperature and chemical absorption carbon capture processes in response to dynamic electricity demand and price profiles," Applied Energy, Elsevier, vol. 228(C), pages 577-592.
    3. Jinxi, Wang & Xue, Bai & Ying, Liang & Aimin, Wang & Cuiying, Lu & Yajun, Ma & Chengmeng, Chen & Heydarian, Dariush, 2023. "Simulation and technical, economic, and environmental analyses of natural gas liquefaction cycle using different configurations," Energy, Elsevier, vol. 278(C).
    4. Yang, Shanju & Fu, Bao & Hou, Yu & Chen, Shuangtao & Li, Zhiguo & Wang, Shaojin, 2019. "Transient cooling and operational performance of the cryogenic part in reverse Brayton air refrigerator," Energy, Elsevier, vol. 167(C), pages 921-938.
    5. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    6. Xuan, Ivan Ying & Skourup, Charlotte & Jensen, Jørgen B. & Haugen, Trond & Thornhill, Nina F., 2022. "Flexible operation of a mixed fluid cascade LNG plant for electrical power management," Energy, Elsevier, vol. 250(C).
    7. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Li, Yang & Kitamura, Yutaka, 2017. "Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization," Energy, Elsevier, vol. 124(C), pages 29-39.
    8. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Baxter, Larry L., 2016. "Dynamic optimization of a hybrid system of energy-storing cryogenic carbon capture and a baseline power generation unit," Applied Energy, Elsevier, vol. 172(C), pages 66-79.
    9. Song, Rui & Cui, Mengmeng & Liu, Jianjun, 2017. "Single and multiple objective optimization of a natural gas liquefaction process," Energy, Elsevier, vol. 124(C), pages 19-28.
    10. Qyyum, Muhammad Abdul & He, Tianbiao & Qadeer, Kinza & Mao, Ning & Lee, Sanggyu & Lee, Moonyong, 2020. "Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction," Applied Energy, Elsevier, vol. 268(C).
    11. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    12. Lee, Inkyu & Park, Jinwoo & Moon, Il, 2017. "Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration," Energy, Elsevier, vol. 140(P1), pages 106-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Tianbiao & Liu, Zuming & Ju, Yonglin & Parvez, Ashak Mahmud, 2019. "A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant," Energy, Elsevier, vol. 167(C), pages 1-12.
    2. Khan, Mohd Shariq & I.A. Karimi, & Bahadori, Alireza & Lee, Moonyong, 2015. "Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 89(C), pages 757-767.
    3. Na, Jonggeol & Lim, Youngsub & Han, Chonghun, 2017. "A modified DIRECT algorithm for hidden constraints in an LNG process optimization," Energy, Elsevier, vol. 126(C), pages 488-500.
    4. He, Tianbiao & Mao, Ning & Liu, Zuming & Qyyum, Muhammad Abdul & Lee, Moonyong & Pravez, Ashak Mahmud, 2020. "Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes," Energy, Elsevier, vol. 199(C).
    5. Jiheon Ryu & Chihun Lee & Yutaek Seo & Juneyoung Kim & Suwon Seo & Daejun Chang, 2016. "A Novel Boil-Off Gas Re-Liquefaction Using a Spray Recondenser for Liquefied Natural-Gas Bunkering Operations," Energies, MDPI, vol. 9(12), pages 1-20, November.
    6. Brodal, Eivind & Jackson, Steve & Eiksund, Oddmar, 2019. "Performance and design study of optimized LNG Mixed Fluid Cascade processes," Energy, Elsevier, vol. 189(C).
    7. Xu, Xiongwen & Liu, Jinping & Cao, Le & Pang, Weiqiang, 2014. "Automatically varying the composition of a mixed refrigerant solution for single mixed refrigerant LNG (liquefied natural gas) process at changing working conditions," Energy, Elsevier, vol. 64(C), pages 931-941.
    8. Li, Yong & Xie, Gongnan & Sunden, Bengt & Lu, Yuanwei & Wu, Yuting & Qin, Jiang, 2018. "Performance study on a single-screw compressor for a portable natural gas liquefaction process," Energy, Elsevier, vol. 148(C), pages 1032-1045.
    9. Bian, Jiang & Cao, Xuewen & Yang, Wen & Edem, Mawugbe Ayivi & Yin, Pengbo & Jiang, Wenming, 2018. "Supersonic liquefaction properties of natural gas in the Laval nozzle," Energy, Elsevier, vol. 159(C), pages 706-715.
    10. Sanavandi, Hamid & Mafi, Mostafa & Ziabasharhagh, Masoud, 2019. "Normalized sensitivity analysis of LNG processes - Case studies: Cascade and single mixed refrigerant systems," Energy, Elsevier, vol. 188(C).
    11. Qyyum, Muhammad Abdul & He, Tianbiao & Qadeer, Kinza & Mao, Ning & Lee, Sanggyu & Lee, Moonyong, 2020. "Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction," Applied Energy, Elsevier, vol. 268(C).
    12. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    13. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    14. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    15. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    16. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.
    17. Ali Rehman & Muhammad Abdul Qyyum & Ashfaq Ahmad & Saad Nawaz & Moonyong Lee & Li Wang, 2020. "Performance Enhancement of Nitrogen Dual Expander and Single Mixed Refrigerant LNG Processes Using Jaya Optimization Approach," Energies, MDPI, vol. 13(12), pages 1-27, June.
    18. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    19. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    20. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:244-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.