IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp318-325.html
   My bibliography  Save this article

Storing energy and powering small systems with mechanical springs made of carbon nanotube yarn

Author

Listed:
  • Hill, Frances A.
  • Havel, Timothy F.
  • Lashmore, David
  • Schauer, Mark
  • Livermore, Carol

Abstract

CNT (carbon nanotube) yarns stretched in tension as mechanical springs are used to drive both electrical and mechanical loads in order to demonstrate the CNT yarns' potential for high power density, their potential for metered energy release, and their application to power practical systems. The energy-storing properties of the CNT yarn are characterized, and the design, operation, and characterization of three demonstration systems that store energy in stretched CNT yarns and release it to drive an electrical or mechanical load are presented. When loaded in tension, the yarn stores energy with an energy per unit length of up to 13.4 mJ/m and an energy density of up to 7720 kJ/m3 or 6.7 kJ/kg. The CNT spring-driven demonstration systems include a mechanical slingshot and two mechanically-driven electric power supplies. The slingshot releases energy stored in a stretched CNT spring rapidly to launch a projectile, with up to 56% power extraction efficiency. The first electric power supply converts stored mechanical energy into electric power using an escapement-based power regulation mechanism and piezoelectric energy conversion. The second electric power supply uses an electromagnetic conversion system to convert energy stored in the CNT spring to electric output power without regulating the rate of energy release from the spring. The devices demonstrate that CNT yarn can be used to drive mechanical and electrical loads using both quick-release devices that provide high power, and slow-release, escapement-metered systems.

Suggested Citation

  • Hill, Frances A. & Havel, Timothy F. & Lashmore, David & Schauer, Mark & Livermore, Carol, 2014. "Storing energy and powering small systems with mechanical springs made of carbon nanotube yarn," Energy, Elsevier, vol. 76(C), pages 318-325.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:318-325
    DOI: 10.1016/j.energy.2014.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, TingXian & Lee, Ju-Hyuk & Wang, RuZhu & Kang, Yong Tae, 2013. "Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes," Energy, Elsevier, vol. 55(C), pages 752-761.
    2. Borghei, Maryam & Scotti, Gianmario & Kanninen, Petri & Weckman, Timo & Anoshkin, Ilya V. & Nasibulin, Albert G. & Franssila, Sami & Kauppinen, Esko I. & Kallio, Tanja & Ruiz, Virginia, 2014. "Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes," Energy, Elsevier, vol. 65(C), pages 612-620.
    3. Huang, Ke-Jing & Wang, Lan & Zhang, Ji-Zong & Wang, Ling-Ling & Mo, Yan-Ping, 2014. "One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor," Energy, Elsevier, vol. 67(C), pages 234-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajendran Prabakaran & Shaji Sidney & Dhasan Mohan Lal & C. Selvam & Sivasankaran Harish, 2019. "Solidification of Graphene-Assisted Phase Change Nanocomposites inside a Sphere for Cold Storage Applications," Energies, MDPI, vol. 12(18), pages 1-16, September.
    2. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    3. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    4. Song, Xingjuan & Zhang, Dongming, 2014. "Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)," Energy, Elsevier, vol. 70(C), pages 223-230.
    5. Ghosh, Sampad & Withanage, Sajeevi S. & Chamlagain, Bhim & Khondaker, Saiful I. & Harish, Sivasankaran & Saha, Bidyut Baran, 2020. "Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors," Energy, Elsevier, vol. 203(C).
    6. Lee, Seul-Yi & Kim, Byung-Ju & Park, Soo-Jin, 2014. "Influence of H2O2 treatment on electrochemical activity of mesoporous carbon-supported Pt–Ru catalysts," Energy, Elsevier, vol. 66(C), pages 70-76.
    7. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    8. Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.
    9. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Sun, Xiaohan & Yang, Rue & Zhang, Qiong & Liu, Feng & Di, Xin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2018. "Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage," Energy, Elsevier, vol. 159(C), pages 929-936.
    10. Pourjavadi, Ali & Doroudian, Mohadeseh & Ahadpour, Amirkhashayar & Pourbadiei, Behzad, 2018. "Preparation of flexible and free-standing graphene-based current collector via a new and facile self-assembly approach: Leading to a high performance porous graphene/polyaniline supercapacitor," Energy, Elsevier, vol. 152(C), pages 178-189.
    11. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    12. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    13. Huang, Kaikai & Zhang, Dongming & Hu, Mingming & Hu, Qinghui, 2014. "Cr2O3/C composite coatings on stainless steel 304 as bipolar plate for proton exchange membrane fuel cell," Energy, Elsevier, vol. 76(C), pages 816-821.
    14. Gao, Huan & Bing, Naici & Xie, Huaqing & Yu, Wei, 2022. "Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application," Energy, Elsevier, vol. 254(PA).
    15. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    16. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
    17. Hong, Wei & Wang, Jinqing & Li, Zhangpeng & Yang, Shengrong, 2015. "Fabrication of Co3O4@Co–Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage," Energy, Elsevier, vol. 93(P1), pages 435-441.
    18. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    19. Wang, Chaoming & Chen, Ke & Huang, Jun & Cai, Zhengyu & Hu, Zhanjiang & Wang, Tingjun, 2019. "Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives," Energy, Elsevier, vol. 180(C), pages 873-880.
    20. Paul, John & Pandey, A.K. & Mishra, Yogeshwar Nath & Said, Zafar & Mishra, Yogendra Kumar & Ma, Zhenjun & Jacob, Jeeja & Kadirgama, K. & Samykano, M. & Tyagi, V.V., 2022. "Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:318-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.