IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp675-681.html
   My bibliography  Save this article

Heat exchanger operation in the externally heated air valve engine with separated settling chambers

Author

Listed:
  • Kazimierski, Zbyszko
  • Wojewoda, Jerzy

Abstract

The crucial role in the externally heated air valve engine is played by its heat exchangers which work in a closed cycle. These are: a heater and a cooler and they are subject to a numerical analysis in the paper. Both of them are equipped with fixed volumes that are separate settling chambers causing that heat exchangers behave as almost stationary recuperators and analysis of the stationary behaviour is the main goal of the paper. Power and efficiency of the engine must be not lower than their averaged values for the same engine working in unsteady conditions. The results of calculations confirm such a statement. The pressure drop in the exchanger is another natural phenomenon presented. It has been overcome by use of additional blowers and the use of them is an additional focus of the presented analysis. A separation of settling chambers and additional blowers is a novelty in the paper. There is also a pre-heater applied in the engine which does not differ from well-known heat exchangers met in energy generation devices. The main objective of the paper is to find the behaviour of the engine model under stationary conditions of the heat exchangers and compare it with the non-stationary ones.

Suggested Citation

  • Kazimierski, Zbyszko & Wojewoda, Jerzy, 2014. "Heat exchanger operation in the externally heated air valve engine with separated settling chambers," Energy, Elsevier, vol. 74(C), pages 675-681.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:675-681
    DOI: 10.1016/j.energy.2014.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400855X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wojewoda, Jerzy & Kazimierski, Zbyszko, 2010. "Numerical model and investigations of the externally heated valve Joule engine," Energy, Elsevier, vol. 35(5), pages 2099-2108.
    2. Xu, Qiyue & Cai, Maolin & Shi, Yan, 2014. "Dynamic heat transfer model for temperature drop analysis and heat exchange system design of the air-powered engine system," Energy, Elsevier, vol. 68(C), pages 877-885.
    3. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Cai, Jun & Wang, Yongwei, 2013. "Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system," Energy, Elsevier, vol. 63(C), pages 95-102.
    4. Lontsi, Frederic & Hamandjoda, Oumarou & Fozao, Kennedy & Stouffs, Pascal & Nganhou, Jean, 2013. "Dynamic simulation of a small modified Joule cycle reciprocating Ericsson engine for micro-cogeneration systems," Energy, Elsevier, vol. 63(C), pages 309-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komninos, N.P. & Rogdakis, E.D., 2018. "Numerical investigation into the effect of compressor and expander valve timings on the performance of an Ericsson engine equipped with a gas-to-gas heat exchanger," Energy, Elsevier, vol. 163(C), pages 1077-1092.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Touré, Abdou & Stouffs, Pascal, 2014. "Modeling of the Ericsson engine," Energy, Elsevier, vol. 76(C), pages 445-452.
    2. Ngangué, Max Ndamé & Stouffs, Pascal, 2020. "Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine," Energy, Elsevier, vol. 190(C).
    3. Komninos, N.P. & Rogdakis, E.D., 2018. "Numerical investigation into the effect of compressor and expander valve timings on the performance of an Ericsson engine equipped with a gas-to-gas heat exchanger," Energy, Elsevier, vol. 163(C), pages 1077-1092.
    4. Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B., 2016. "Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach," Energy, Elsevier, vol. 102(C), pages 31-43.
    5. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
    6. Liu, Chi-Min & You, Jhih-Jie & Sung, Cheng-Kuo & Huang, Chih-Yung, 2015. "Modified intake and exhaust system for piston-type compressed air engines," Energy, Elsevier, vol. 90(P1), pages 516-524.
    7. Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
    8. Cheng, Yang & Li, Yingxiao & Wang, Jinghan & Tam, Lapmou & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2023. "Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method," Energy, Elsevier, vol. 262(PA).
    9. Ngwaka, Ugochukwu & Wu, Dawei & Happian-Smith, Julian & Jia, Boru & Smallbone, Andrew & Diyoke, Chidiebere & Roskilly, Anthony Paul, 2021. "Parametric analysis of a semi-closed-loop linear joule engine generator using argon and oxy-hydrogen combustion," Energy, Elsevier, vol. 217(C).
    10. Ngwaka, Ugochukwu & Jia, Boru & Lawrence, Christopher & Wu, Dawei & Smallbone, Andrew & Roskilly, Anthony Paul, 2019. "The characteristics of a Linear Joule Engine Generator operating on a dry friction principle," Applied Energy, Elsevier, vol. 237(C), pages 49-59.
    11. Wang, Xiaoyin & Zhao, Xiling & Fu, Lin, 2018. "Entransy analysis of secondary network flow distribution in absorption heat exchanger," Energy, Elsevier, vol. 147(C), pages 428-439.
    12. Yin, Qian & Du, Wen-Jing & Ji, Xing-Lin & Cheng, Lin, 2016. "Optimization design and economic analyses of heat recovery exchangers on rotary kilns," Applied Energy, Elsevier, vol. 180(C), pages 743-756.
    13. Chen, Hui & Liu, Ying-wen, 2021. "A new optimization concept of the recuperator based on Hampson-type miniature cryocoolers," Energy, Elsevier, vol. 224(C).
    14. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    15. Sun, Jinxiang & Zhang, Ruibo & Wang, Mingjun & Zhang, Jing & Qiu, Suizheng & Tian, Wenxi & Su, G.H., 2022. "Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method," Energy, Elsevier, vol. 259(C).
    16. Marvania, Devang & Subudhi, Sudhakar, 2017. "A comprehensive review on compressed air powered engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1119-1130.
    17. Chen, Hui & Wei, Chen-xi & Ding, Wen-hao & Liu, Ying-wen, 2023. "Optimization of miniature Joule-Thomson cryocooler with non-isometric recuperator on transient characteristics," Energy, Elsevier, vol. 267(C).
    18. Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B. & Peultier, P., 2013. "Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle," Energy, Elsevier, vol. 49(C), pages 229-239.
    19. Qian, Jin-yuan & Wei, Lin & Zhang, Ming & Chen, Fu-qiang & Chen, Li-long & Jiang, Wei-kang & Jin, Zhi-jiang, 2017. "Flow rate analysis of compressible superheated steam through pressure reducing valves," Energy, Elsevier, vol. 135(C), pages 650-658.
    20. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:675-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.