IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015316.html
   My bibliography  Save this article

Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions

Author

Listed:
  • Guo, Jiangfeng
  • Song, Jian
  • Han, Zengxiao
  • Pervunin, Konstantin S.
  • Markides, Christos N.

Abstract

The thermohydraulic characteristics of supercritical CO2 flows in a vertical tube at cooling conditions are numerically investigated, and the influence of the heat-flux condition and of the flow direction are evaluated. Constant (i.e., uniform), linearly increasing and linearly decreasing heat-flux conditions are considered as three typical heat-flux distributions over the pipe length. The simulation results show that there exists a maximum heat transfer coefficient at all heat-flux conditions when the fluid bulk temperature is slightly higher than the pseudo-critical temperature, but also that the heat-flux condition has little effect on the peak value of the heat transfer coefficient. From the viewpoint of the second law of thermodynamics, the influence of the heat-flux condition on the local entropy generation can be attributed to the distributed matching between the heat flux and the difference between the wall temperature and the fluid bulk temperature, as a better matching is associated with a higher uniformity of the local entropy generation and reduced overall irreversibilities. Upward and downward flows are considered, along with flows without gravity as a baseline case for comparison purposes, with the field synergy principle employed to explain the different phenomena in these flows. The buoyancy effect laminarises the downward flows and raises the temperature gradient; hence, the heat transfer deteriorates and the irreversibility increases. In the upward flows, the buoyancy effect augments the turbulence and alleviates the variations in temperature and velocity in the core region, consequently reducing the irreversible loss and enhancing heat transfer. The present study provides insights into the mechanisms of supercritical CO2 heat transfer characteristics as well as practical guidance on the design and optimisation of relevant components.

Suggested Citation

  • Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015316
    DOI: 10.1016/j.energy.2022.124628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Xinying & Guo, Jiangfeng & Huai, Xiulan & Zhang, Haiyan & Cheng, Keyong & Zhou, Jingzhi, 2019. "Numerical investigations on serpentine channel for supercritical CO2 recuperator," Energy, Elsevier, vol. 172(C), pages 517-530.
    2. Zhou, Aozheng & Li, Xue-song & Ren, Xiao-dong & Song, Jian & Gu, Chun-wei, 2020. "Thermodynamic and economic analysis of a supercritical carbon dioxide (S–CO2) recompression cycle with the radial-inflow turbine efficiency prediction," Energy, Elsevier, vol. 191(C).
    3. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Cai, Jun & Wang, Yongwei, 2013. "Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system," Energy, Elsevier, vol. 63(C), pages 95-102.
    4. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).
    5. Song, Jian & Wang, Yaxiong & Wang, Kai & Wang, Jiangfeng & Markides, Christos N., 2021. "Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations," Renewable Energy, Elsevier, vol. 174(C), pages 1020-1035.
    6. Guo, Jiangfeng & Xiang, Mengru & Zhang, Haiyan & Huai, Xiulan & Cheng, Keyong & Cui, Xinying, 2019. "Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions," Energy, Elsevier, vol. 170(C), pages 1067-1081.
    7. Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
    8. Ma, Yitai & Liu, Zhongyan & Tian, Hua, 2013. "A review of transcritical carbon dioxide heat pump and refrigeration cycles," Energy, Elsevier, vol. 55(C), pages 156-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jiangfeng & Song, Jian & Narayan, Surya & Pervunin, Konstantin S. & Markides, Christos N., 2023. "Numerical investigation of the thermal-hydraulic performance of horizontal supercritical CO2 flows with half-wall heat-flux conditions," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jiangfeng & Song, Jian & Narayan, Surya & Pervunin, Konstantin S. & Markides, Christos N., 2023. "Numerical investigation of the thermal-hydraulic performance of horizontal supercritical CO2 flows with half-wall heat-flux conditions," Energy, Elsevier, vol. 264(C).
    2. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
    3. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    4. Xu, Yong & Yi, Zhengming, 2023. "Effect of flow direction on heat transfer characteristics of supercritical CO2 in a heating serpentine micro-tube," Energy, Elsevier, vol. 262(PB).
    5. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    6. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    7. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    8. N. P. Longmire & S. L. Showalter & D. T. Banuti, 2023. "Holding water in a sieve—stable droplets without surface tension," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Brian T. White & Michael J. Wagner & Ty Neises & Cory Stansbury & Ben Lindley, 2021. "Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    10. Sun, Lei & Liu, Tianyuan & Wang, Ding & Huang, Chengming & Xie, Yonghui, 2022. "Deep learning method based on graph neural network for performance prediction of supercritical CO2 power systems," Applied Energy, Elsevier, vol. 324(C).
    11. Li, Zhen & Lu, Daogang & Wang, Zhichao & Cao, Qiong, 2023. "Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack," Energy, Elsevier, vol. 282(C).
    12. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    13. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    14. Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
    15. Heo, Jin Young & Kim, Min Seok & Baik, Seungjoon & Bae, Seong Jun & Lee, Jeong Ik, 2017. "Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor," Applied Energy, Elsevier, vol. 206(C), pages 1118-1130.
    16. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    17. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    18. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    19. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Kim, Min Seok & Ahn, Yoonhan & Kim, Beomjoo & Lee, Jeong Ik, 2016. "Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle," Energy, Elsevier, vol. 111(C), pages 893-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.