IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp212-219.html
   My bibliography  Save this article

Melting over a wavy surface in a rectangular cavity heated from below

Author

Listed:
  • Kousksou, T.
  • Mahdaoui, M.
  • Ahmed, A.
  • Msaad, A. Ait

Abstract

The current numerical study is conducted to analyze melting in a rectangular closed enclosure by subjecting the bottom wavy surface to a uniform temperature. The cavity vertical walls and the top wall are insulated while the bottom wall is maintained at temperature TB = 38.3 °C. The enclosure was filled by solid Gallium initially at temperature Ti = 28.3 °C. A numerical code is developed using an unstructured finite-volume method and an enthalpy porosity technique to solve for natural convection coupled to solid–liquid phase change. The validity of the numerical code used is ascertained by comparing our results with previously published results. The effect of the amplitude of the wavy surface on the flow structure and heat transfer characteristics is investigated in detail. It is found that the rate of the melting increases with the elevation in the magnitude of the amplitude value of the wavy surface.

Suggested Citation

  • Kousksou, T. & Mahdaoui, M. & Ahmed, A. & Msaad, A. Ait, 2014. "Melting over a wavy surface in a rectangular cavity heated from below," Energy, Elsevier, vol. 64(C), pages 212-219.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:212-219
    DOI: 10.1016/j.energy.2013.11.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300995X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Mei, Bao-Jun & Liu, Yi-Ning & Huang, Yong-Hua & Yuan, Xu-Dong, 2011. "A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation," Energy, Elsevier, vol. 36(10), pages 5797-5804.
    2. Wang, Yi-Hsien & Yang, Yue-Tzu, 2011. "Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink," Energy, Elsevier, vol. 36(8), pages 5214-5224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdaoui, M. & Kousksou, T. & Marín, J.M. & El Rhafiki, T. & Zeraouli, Y., 2014. "Laminar flow in circular tube with internal solidification of a binary mixture," Energy, Elsevier, vol. 78(C), pages 713-719.
    2. Juan Duan & Yongliang Xiong & Dan Yang, 2019. "On the Melting Process of the Phase Change Material in Horizontal Rectangular Enclosures," Energies, MDPI, vol. 12(16), pages 1-21, August.
    3. Ahmed Saad Soliman & Ahmed A. Sultan & Mohamed A. Sultan, 2022. "Effect of Mushy Zone Parameter on Phase Change Behavior of Different Configurations Storage Unit: Numerical Simulation and Experimental Validation," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    4. Amin Ebrahimi & Chris R. Kleijn & Ian M. Richardson, 2019. "Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method," Energies, MDPI, vol. 12(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    2. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    3. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    4. Cheng, Wen-long & Yuan, Shuai & Song, Jia-liang, 2014. "Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures," Energy, Elsevier, vol. 74(C), pages 447-454.
    5. Li, Peisheng & Li, Zhihao & Zhang, Ying & Li, Wenbin & Chen, Yue & Lei, Jie, 2020. "Numerical research on performance comparison of multi-layer high temperature latent heat storage under different structure parameter," Renewable Energy, Elsevier, vol. 156(C), pages 131-141.
    6. Nie, Binjian & Zou, Boyang & She, Xiaohui & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2020. "Development of a heat transfer coefficient based design method of a thermal energy storage device for transport air-conditioning applications," Energy, Elsevier, vol. 196(C).
    7. Hossieny, Nemat & Shrestha, Som S. & Owusu, Osei A. & Natal, Manuel & Benson, Rick & Desjarlais, Andre, 2019. "Improving the energy efficiency of a refrigerator-freezer through the use of a novel cabinet/door liner based on polylactide biopolymer," Applied Energy, Elsevier, vol. 235(C), pages 1-9.
    8. Huang, Yi-Huan & Cheng, Yi-Xin & Zhao, Rui & Cheng, Wen-Long, 2020. "A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy," Applied Energy, Elsevier, vol. 262(C).
    9. Zhang, Sijie & Zhao, Rui & Liu, Jie & Gu, Junjie, 2014. "Investigation on a hydrogel based passive thermal management system for lithium ion batteries," Energy, Elsevier, vol. 68(C), pages 854-861.
    10. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
    12. Luís Sousa Rodrigues & Daniel Lemos Marques & Jorge Augusto Ferreira & Vítor António Ferreira Costa & Nelson Dias Martins & Fernando José Neto Da Silva, 2022. "The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 15(20), pages 1-36, October.
    13. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    14. Kundu, Balaram & Lee, Kwan-Soo, 2012. "A novel analysis for calculating the smallest envelope shape of wet fins with a nonlinear mode of surface transport," Energy, Elsevier, vol. 44(1), pages 527-543.
    15. Marques, A.C. & Davies, G.F. & Evans, J.A. & Maidment, G.G. & Wood, I.D., 2013. "Theoretical modelling and experimental investigation of a thermal energy storage refrigerator," Energy, Elsevier, vol. 55(C), pages 457-465.
    16. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    17. Pirvaram, A. & Sadrameli, S.M. & Abdolmaleki, L., 2019. "Energy management of a household refrigerator using eutectic environmental friendly PCMs in a cascaded condition," Energy, Elsevier, vol. 181(C), pages 321-330.
    18. Hazarika, Saheera Azmi & Bhanja, Dipankar & Nath, Sujit & Kundu, Balaram, 2015. "Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer," Energy, Elsevier, vol. 84(C), pages 303-316.
    19. Campos-Celador, A. & Diarce, G. & González-Pino, I. & Sala, J.M., 2013. "Development and comparative analysis of the modeling of an innovative finned-plate latent heat thermal energy storage system," Energy, Elsevier, vol. 58(C), pages 438-447.
    20. Seok-Joon Lee & Seul-Hyun Park, 2018. "An Experimental Investigation of Thermal Characteristics of Phase Change Material Applied to Improve the Isothermal Operation of a Refrigerator," Energies, MDPI, vol. 11(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:212-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.