IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v63y2013icp1-9.html
   My bibliography  Save this article

Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation

Author

Listed:
  • Bessa, Larissa C.B.A.
  • Ferreira, M.C.
  • Batista, Eduardo A.C.
  • Meirelles, Antonio J.A.

Abstract

Bioethanol derived from sugarcane is the most advanced alternative to fossil fuels and part of the solution in the efforts to achieve a low-carbon emissions world. Since distillation accounts for a large part of total energy consumption by industry, the need to reduce energy requirements serves as motivation for the study of this process. Many energy efficient schemes have been developed with this aim. However, most of them focus on columns working under pressure. Due to the organic nature of sugarcane and also to the liming process to which its juice is submitted, significant fouling can result from the insolubility of calcium salts, which is intensified at higher temperatures. In this work, Aspen Plus® was used to investigate the energy requirement of a configuration of double-effect forward-integrated columns, considering an extra stripping section to reduce the risk of fouling. The wine was considered a multicomponent mixture. Response surface methodology was applied to optimize the process and analyze some operating parameters. The configurations studied were adequate, but involved higher investments. The total annual costs were observed to be lower than those of a conventional process. Finally, congeners tended to have a negative effect on the specific steam consumption of the process.

Suggested Citation

  • Bessa, Larissa C.B.A. & Ferreira, M.C. & Batista, Eduardo A.C. & Meirelles, Antonio J.A., 2013. "Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation," Energy, Elsevier, vol. 63(C), pages 1-9.
  • Handle: RePEc:eee:energy:v:63:y:2013:i:c:p:1-9
    DOI: 10.1016/j.energy.2013.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavalcanti, Marcelo & Szklo, Alexandre & Machado, Giovani, 2012. "Do ethanol prices in Brazil follow Brent price and international gasoline price parity?," Renewable Energy, Elsevier, vol. 43(C), pages 423-433.
    2. Lefevre, Sébastien & Ferrasse, Jean-Henry & Faucherand, Rémy & Viand, Alain & Boutin, Olivier, 2012. "Energetic optimization of wet air oxidation process using experimental design coupled with process simulation," Energy, Elsevier, vol. 41(1), pages 175-183.
    3. Rashid, Umer & Rehman, Hafiz Abdul & Hussain, Irshad & Ibrahim, Muhammad & Haider, Muhammad Sajjad, 2011. "Muskmelon (Cucumis melo) seed oil: A potential non-food oil source for biodiesel production," Energy, Elsevier, vol. 36(9), pages 5632-5639.
    4. Chen, Lei & Yin, Ping & Liu, Xiguang & Yang, Lixia & Yu, Zhongxi & Guo, Xin & Xin, Xinquan, 2011. "Biodiesel production over copper vanadium phosphate," Energy, Elsevier, vol. 36(1), pages 175-180.
    5. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    6. Quintero, J.A. & Montoya, M.I. & Sánchez, O.J. & Giraldo, O.H. & Cardona, C.A., 2008. "Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case," Energy, Elsevier, vol. 33(3), pages 385-399.
    7. Walter, Arnaldo & Ensinas, Adriano V., 2010. "Combined production of second-generation biofuels and electricity from sugarcane residues," Energy, Elsevier, vol. 35(2), pages 874-879.
    8. Escobar, José C. & Lora, Electo S. & Venturini, Osvaldo J. & Yáñez, Edgar E. & Castillo, Edgar F. & Almazan, Oscar, 2009. "Biofuels: Environment, technology and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1275-1287, August.
    9. Martínez, Juan Daniel & Pineda, Tatiana & López, Juan Pablo & Betancur, Mariluz, 2011. "Assessment of the rice husk lean-combustion in a bubbling fluidized bed for the production of amorphous silica-rich ash," Energy, Elsevier, vol. 36(6), pages 3846-3854.
    10. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    11. Cerqueira Leite, Rogério Cezar de & Verde Leal, Manoel Regis Lima & Barbosa Cortez, Luís Augusto & Griffin, W. Michael & Gaya Scandiffio, Mirna Ivonne, 2009. "Can Brazil replace 5% of the 2025 gasoline world demand with ethanol?," Energy, Elsevier, vol. 34(5), pages 655-661.
    12. Bessa, Larissa C.B.A. & Batista, Fabio R.M. & Meirelles, Antonio J.A., 2012. "Double-effect integration of multicomponent alcoholic distillation columns," Energy, Elsevier, vol. 45(1), pages 603-612.
    13. Plesu, Alexandra Elena & Bonet, Jordi & Plesu, Valentin & Bozga, Grigore & Galan, Maria Isabel, 2008. "Residue curves map analysis for tert-amyl methyl ether synthesis by reactive distillation in kinetically controlled conditions with energy-saving evaluation," Energy, Elsevier, vol. 33(10), pages 1572-1589.
    14. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    15. Taymaz, Imdat & Akgun, Fehmi & Benli, Merthan, 2011. "Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC," Energy, Elsevier, vol. 36(2), pages 1155-1160.
    16. Nakaiwa, M. & Huang, K. & Owa, M. & Akiya, T. & Nakane, T. & Sato, M. & Takamatsu, T., 1997. "Energy savings in heat-integrated distillation columns," Energy, Elsevier, vol. 22(6), pages 621-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    2. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the design and comparison of optimal production configurations of first and first and second generation ethanol with power," Applied Energy, Elsevier, vol. 184(C), pages 247-265.
    3. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production," Energy, Elsevier, vol. 117(P2), pages 540-549.
    4. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    5. Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bessa, Larissa C.B.A. & Batista, Fabio R.M. & Meirelles, Antonio J.A., 2012. "Double-effect integration of multicomponent alcoholic distillation columns," Energy, Elsevier, vol. 45(1), pages 603-612.
    2. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    3. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    4. Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).
    5. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    6. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    7. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    8. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    9. Wang, Lei & Quiceno, Raul & Price, Catherine & Malpas, Rick & Woods, Jeremy, 2014. "Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 571-582.
    10. Ko, Chun-Han & Wang, Ya-Nang & Chang, Fang-Chih & Chen, Jia-Jie & Chen, Wen-Hua & Hwang, Wen-Song, 2012. "Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan," Energy, Elsevier, vol. 44(1), pages 329-334.
    11. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production," Energy, Elsevier, vol. 117(P2), pages 540-549.
    12. van de Bor, D.M. & Infante Ferreira, C.A., 2013. "Quick selection of industrial heat pump types including the impact of thermodynamic losses," Energy, Elsevier, vol. 53(C), pages 312-322.
    13. Dantas, Guilherme A. & Legey, Luiz F.L. & Mazzone, Antonella, 2013. "Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 356-364.
    14. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    15. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    16. Triana, Cristian F. & Quintero, Julián A. & Agudelo, Roberto A. & Cardona, Carlos A. & Higuita, Juan C., 2011. "Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production," Energy, Elsevier, vol. 36(7), pages 4182-4190.
    17. Shahandeh, Hossein & Jafari, Mina & Kasiri, Norollah & Ivakpour, Javad, 2015. "Economic optimization of heat pump-assisted distillation columns in methanol-water separation," Energy, Elsevier, vol. 80(C), pages 496-508.
    18. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the design and comparison of optimal production configurations of first and first and second generation ethanol with power," Applied Energy, Elsevier, vol. 184(C), pages 247-265.
    19. Jonker, J.G.G. & van der Hilst, F. & Junginger, H.M. & Cavalett, O. & Chagas, M.F. & Faaij, A.P.C., 2015. "Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies," Applied Energy, Elsevier, vol. 147(C), pages 593-610.
    20. Mrad, Nadia & Varuvel, Edwin Geo & Tazerout, Mohand & Aloui, Fethi, 2012. "Effects of biofuel from fish oil industrial residue – Diesel blends in diesel engine," Energy, Elsevier, vol. 44(1), pages 955-963.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:63:y:2013:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.