IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v54y2013icp139-145.html
   My bibliography  Save this article

Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation

Author

Listed:
  • Park, K.
  • Hwang, H.K.
  • Seo, J.W.
  • Seo, W.-S.

Abstract

The incorporation of CeO2 and Dy2O3 to ZnO leads to a marked increase in the electrical conductivity. The absolute values of the Seebeck coefficients of Zn1−xCexO and Zn1−xDyxO increase with CeO2 and Dy2O3 contents up to x = 0.003 and 0.005, respectively, and then decrease with further increases of their concentrations. The highest power factor (4.46 × 10−4 Wm−1 K−2 at 800 °C) is attained for Zn0.995Dy0.005O. The power factor is approximately 56 times larger than that of ZnO (0.08 × 10−4 Wm−1 K−2 at 800 °C). The introduction of a small amount of Dy2O3 is highly effective for improving the thermoelectric properties of ZnO.

Suggested Citation

  • Park, K. & Hwang, H.K. & Seo, J.W. & Seo, W.-S., 2013. "Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation," Energy, Elsevier, vol. 54(C), pages 139-145.
  • Handle: RePEc:eee:energy:v:54:y:2013:i:c:p:139-145
    DOI: 10.1016/j.energy.2013.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2005. "Performance optimization of a two-stage semiconductor thermoelectric-generator," Applied Energy, Elsevier, vol. 82(4), pages 300-312, December.
    2. Sahin, A.Z. & Yilbas, B.S. & Shuja, S.Z. & Momin, O., 2011. "Investigation into topping cycle: Thermal efficiency with and without presence of thermoelectric generator," Energy, Elsevier, vol. 36(7), pages 4048-4054.
    3. Chen, Wei-Hsin & Liao, Chen-Yeh & Hung, Chen-I & Huang, Wei-Lun, 2012. "Experimental study on thermoelectric modules for power generation at various operating conditions," Energy, Elsevier, vol. 45(1), pages 874-881.
    4. Kubo, Masataka & Shinoda, Masahisa & Furuhata, Tomohiko & Kitagawa, Kuniyuki, 2005. "Optimization of the incision size and cold-end temperature of a thermoelectric device," Energy, Elsevier, vol. 30(11), pages 2156-2170.
    5. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    6. Walker, Michael E. & Safari, Iman & Theregowda, Ranjani B. & Hsieh, Ming-Kai & Abbasian, Javad & Arastoopour, Hamid & Dzombak, David A. & Miller, David C., 2012. "Economic impact of condenser fouling in existing thermoelectric power plants," Energy, Elsevier, vol. 44(1), pages 429-437.
    7. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    8. Hsiao, Y.Y. & Chang, W.C. & Chen, S.L., 2010. "A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine," Energy, Elsevier, vol. 35(3), pages 1447-1454.
    9. Wang, Chien-Chang & Hung, Chen-I & Chen, Wei-Hsin, 2012. "Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization," Energy, Elsevier, vol. 39(1), pages 236-245.
    10. Cheng, Tsung-Chieh & Cheng, Chin-Hsiang & Huang, Zhu-Zin & Liao, Guo-Chun, 2011. "Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications," Energy, Elsevier, vol. 36(1), pages 133-140.
    11. Champier, D. & Bedecarrats, J.P. & Rivaletto, M. & Strub, F., 2010. "Thermoelectric power generation from biomass cook stoves," Energy, Elsevier, vol. 35(2), pages 935-942.
    12. Champier, D. & Bédécarrats, J.P. & Kousksou, T. & Rivaletto, M. & Strub, F. & Pignolet, P., 2011. "Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove," Energy, Elsevier, vol. 36(3), pages 1518-1526.
    13. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    14. Qiu, K. & Hayden, A.C.S., 2012. "Development of a novel cascading TPV and TE power generation system," Applied Energy, Elsevier, vol. 91(1), pages 304-308.
    15. Yilbas, B.S. & Sahin, A.Z., 2010. "Thermoelectric device and optimum external load parameter and slenderness ratio," Energy, Elsevier, vol. 35(12), pages 5380-5384.
    16. Weidenkaff, A. & Robert, R. & Aguirre, M. & Bocher, L. & Lippert, T. & Canulescu, S., 2008. "Development of thermoelectric oxides for renewable energy conversion technologies," Renewable Energy, Elsevier, vol. 33(2), pages 342-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raman, Perumal & Ram, Narasimhan K. & Gupta, Ruchi, 2014. "Development, design and performance analysis of a forced draft clean combustion cookstove powered by a thermo electric generator with multi-utility options," Energy, Elsevier, vol. 69(C), pages 813-825.
    2. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    3. Cauda, Valentina & Pugliese, Diego & Garino, Nadia & Sacco, Adriano & Bianco, Stefano & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio, 2014. "Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures," Energy, Elsevier, vol. 65(C), pages 639-646.
    4. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
    2. Wang, Chien-Chang & Hung, Chen-I & Chen, Wei-Hsin, 2012. "Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization," Energy, Elsevier, vol. 39(1), pages 236-245.
    3. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    4. Chen, Wei-Hsin & Wang, Chien-Chang & Hung, Chen-I. & Yang, Chang-Chung & Juang, Rei-Cheng, 2014. "Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator," Energy, Elsevier, vol. 64(C), pages 287-297.
    5. Chen, Wei-Hsin & Liao, Chen-Yeh & Hung, Chen-I & Huang, Wei-Lun, 2012. "Experimental study on thermoelectric modules for power generation at various operating conditions," Energy, Elsevier, vol. 45(1), pages 874-881.
    6. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    7. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    8. Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.
    9. Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
    10. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    11. Su, Shanhe & Liu, Tie & Wang, Junyi & Chen, Jincan, 2014. "Evaluation of temperature-dependent thermoelectric performances based on PbTe1−yIy and PbTe: Na/Ag2Te materials," Energy, Elsevier, vol. 70(C), pages 79-85.
    12. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    13. Sahin, A.Z. & Yilbas, B.S. & Shuja, S.Z. & Momin, O., 2011. "Investigation into topping cycle: Thermal efficiency with and without presence of thermoelectric generator," Energy, Elsevier, vol. 36(7), pages 4048-4054.
    14. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    15. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    16. He, Wei & Wang, Shixue & Lu, Chi & Zhang, Xing & Li, Yanzhe, 2016. "Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system," Applied Energy, Elsevier, vol. 162(C), pages 1251-1258.
    17. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    18. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K. & Ismail, A.K., 2015. "Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power," Renewable Energy, Elsevier, vol. 74(C), pages 505-516.
    19. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    20. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:54:y:2013:i:c:p:139-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.