IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v106y2013icp79-88.html
   My bibliography  Save this article

Optimal design of thermoelectric devices with dimensional analysis

Author

Listed:
  • Lee, HoSung

Abstract

The optimum design of thermoelectric devices (thermoelectric generator and cooler) in connection with heat sinks was developed using dimensional analysis. New dimensionless groups were properly defined to represent important parameters of the thermoelectric devices. Particularly, use of the convection conductance of a fluid in the denominators of the dimensionless parameters was critically important, which leads to a new optimum design. This allows us to determine either the optimal number of thermocouples or the optimal thermal conductance (the geometric ratio of footprint of leg to leg length). It is stated from the present dimensional analysis that, if two fluid temperatures on the heat sinks are given, an optimum design always exists and can be found with the feasible mechanical constraints. The optimum design includes the optimum parameters such as efficiency, power, current, geometry or number of thermocouples, and thermal resistances of heat sinks.

Suggested Citation

  • Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
  • Handle: RePEc:eee:appene:v:106:y:2013:i:c:p:79-88
    DOI: 10.1016/j.apenergy.2013.01.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913000615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.01.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Yuzhuo & Lin, Bihong & Chen, Jincan, 2007. "Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions," Applied Energy, Elsevier, vol. 84(9), pages 882-892, September.
    2. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2008. "Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilities," Applied Energy, Elsevier, vol. 85(7), pages 641-649, July.
    3. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2005. "Performance optimization of a two-stage semiconductor thermoelectric-generator," Applied Energy, Elsevier, vol. 82(4), pages 300-312, December.
    4. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    5. Wang, Chien-Chang & Hung, Chen-I & Chen, Wei-Hsin, 2012. "Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization," Energy, Elsevier, vol. 39(1), pages 236-245.
    6. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    7. Yilbas, B.S. & Sahin, A.Z., 2010. "Thermoelectric device and optimum external load parameter and slenderness ratio," Energy, Elsevier, vol. 35(12), pages 5380-5384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, K. & Hwang, H.K. & Seo, J.W. & Seo, W.-S., 2013. "Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation," Energy, Elsevier, vol. 54(C), pages 139-145.
    2. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    3. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    4. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    5. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Wang, Xiangxiang, 2014. "Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine," Energy, Elsevier, vol. 77(C), pages 489-498.
    6. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    7. Manikandan, S. & Kaushik, S.C., 2016. "The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator," Energy, Elsevier, vol. 100(C), pages 227-237.
    8. He, Wei & Wang, Shixue & Lu, Chi & Zhang, Xing & Li, Yanzhe, 2016. "Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system," Applied Energy, Elsevier, vol. 162(C), pages 1251-1258.
    9. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    10. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    11. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    12. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    13. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    14. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    15. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    16. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    17. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2016. "Power and mass optimization of the hybrid solar panel and thermoelectric generators," Applied Energy, Elsevier, vol. 165(C), pages 297-307.
    18. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    19. Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
    20. Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:106:y:2013:i:c:p:79-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.