IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i9p882-892.html
   My bibliography  Save this article

Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions

Author

Listed:
  • Pan, Yuzhuo
  • Lin, Bihong
  • Chen, Jincan

Abstract

The performance of a thermoelectric refrigeration device, consisting of multi-couple thermoelectric elements and operating between two heat-reservoirs at constant temperatures, is investigated. The influence of the external and internal irreversibilities of the thermoelectric refrigeration device on the performance of the system is analyzed. The general expressions of the coefficient of performance and power input are derived by introducing some dimensionless parameters and variables. The coefficient of performance of the refrigeration device is maximized for a given cooling-load and total heat-transfer area of the system, and consequently, the structure parameters of the device and the area ratio of the heat exchangers of the system are determined optimally. The effects of the various parameters on the optimal performance of the device are discussed further. The results obtained here will be useful for a more detailed investigation and for the optimal design and manufacture of real thermoelectric refrigeration devices.

Suggested Citation

  • Pan, Yuzhuo & Lin, Bihong & Chen, Jincan, 2007. "Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions," Applied Energy, Elsevier, vol. 84(9), pages 882-892, September.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:9:p:882-892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00033-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Venkatasubramanian & Edward Siivola & Thomas Colpitts & Brooks O'Quinn, 2001. "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, Nature, vol. 413(6856), pages 597-602, October.
    2. Cronin B. Vining, 2001. "Semiconductors are cool," Nature, Nature, vol. 413(6856), pages 577-578, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    2. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    3. Siviter, J. & Montecucco, A. & Knox, A.R., 2015. "Rankine cycle efficiency gain using thermoelectric heat pumps," Applied Energy, Elsevier, vol. 140(C), pages 161-170.
    4. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    5. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    6. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    7. Tian, Xiao-Xiao & Asaadi, Soheil & Moria, Hazim & Kaood, Amr & Pourhedayat, Samira & Jermsittiparsert, Kittisak, 2020. "Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler," Energy, Elsevier, vol. 208(C).
    8. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    9. Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
    10. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    11. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    12. Wang, Junyi & Wang, Yuan & Su, Shanhe & Chen, Jincan, 2017. "Simulation design and performance evaluation of a thermoelectric refrigerator with inhomogeneously-doped nanomaterials," Energy, Elsevier, vol. 121(C), pages 427-432.
    13. Hao, Junhong & Qiu, Huachen & Ren, Jianxun & Ge, Zhihua & Chen, Qun & Du, Xiaoze, 2020. "Multi-parameters analysis and optimization of a typical thermoelectric cooler based on the dimensional analysis and experimental validation," Energy, Elsevier, vol. 205(C).
    14. Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
    15. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    2. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    3. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    4. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    5. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    7. Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
    8. Alessandro Bellucci & Stefano Orlando & Luca Medici & Antonio Lettino & Alessio Mezzi & Saulius Kaciulis & Daniele Maria Trucchi, 2023. "Nanostructured Thermoelectric PbTe Thin Films with Ag Addition Deposited by Femtosecond Pulsed Laser Ablation," Energies, MDPI, vol. 16(7), pages 1-14, April.
    9. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    10. Massaguer, E. & Massaguer, A. & Montoro, L. & Gonzalez, J.R., 2014. "Development and validation of a new TRNSYS type for the simulation of thermoelectric generators," Applied Energy, Elsevier, vol. 134(C), pages 65-74.
    11. Zinovi Dashevsky & Sergii Mamykin & Bohdan Dzundza & Mark Auslender & Roni Z. Shneck, 2023. "A Review of Nanocrystalline Film Thermoelectrics on Lead Chalcogenide Semiconductors: Progress and Application," Energies, MDPI, vol. 16(9), pages 1-19, April.
    12. Smith, Eric & Hosseini, Seyed Ehsan, 2019. "Human Body Micro-power plant," Energy, Elsevier, vol. 183(C), pages 16-24.
    13. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    14. Owoyele, Opeoluwa & Ferguson, Scott & O’Connor, Brendan T., 2015. "Performance analysis of a thermoelectric cooler with a corrugated architecture," Applied Energy, Elsevier, vol. 147(C), pages 184-191.
    15. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    16. Zhang, T., 2016. "New thinking on modeling of thermoelectric devices," Applied Energy, Elsevier, vol. 168(C), pages 65-74.
    17. Wu, Yongjia & Zuo, Lei & Chen, Jie & Klein, Jackson A., 2016. "A model to analyze the device level performance of thermoelectric generator," Energy, Elsevier, vol. 115(P1), pages 591-603.
    18. Zhang, Yaxi & Zhu, Na & Zhao, Xudong & Luo, Zhenyu & Hu, Pingfang & Lei, Fei, 2023. "Energy performance and enviroeconomic analysis of a novel PV-MCHP-TEG system," Energy, Elsevier, vol. 274(C).
    19. Harb, Adnan, 2011. "Energy harvesting: State-of-the-art," Renewable Energy, Elsevier, vol. 36(10), pages 2641-2654.
    20. Nguyen T. Hung & Ahmad R. T. Nugraha & Riichiro Saito, 2019. "Thermoelectric Properties of Carbon Nanotubes," Energies, MDPI, vol. 12(23), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:9:p:882-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.