IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p592-601.html
   My bibliography  Save this article

Fuzzy neural network output maximization control for sensorless wind energy conversion system

Author

Listed:
  • Lin, Whei-Min
  • Hong, Chih-Ming
  • Cheng, Fu-Sheng

Abstract

This paper presents the design of an online training fuzzy neural network (FNN) controller with a high-performance speed observer for the induction generator (IG). The proposed output maximization control is achieved without mechanical sensors such as the wind speed or position sensor, and the new control system will deliver maximum electric power with light weight, high efficiency, and high reliability. The estimation of the rotor speed is designed on the basis of the sliding mode control theory.

Suggested Citation

  • Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "Fuzzy neural network output maximization control for sensorless wind energy conversion system," Energy, Elsevier, vol. 35(2), pages 592-601.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:592-601
    DOI: 10.1016/j.energy.2009.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2008. "Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation," Energy, Elsevier, vol. 33(9), pages 1438-1452.
    2. Yurdusev, M.A. & Ata, R. & Çetin, N.S., 2006. "Assessment of optimum tip speed ratio in wind turbines using artificial neural networks," Energy, Elsevier, vol. 31(12), pages 2153-2161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mendi, Balaji & Pattnaik, Monalisa & Srungavarapu, Gopalakrishna, 2024. "A single current sensor based adaptive step size MPPT control of a small scale variable speed wind energy conversion system," Applied Energy, Elsevier, vol. 357(C).
    2. Ming-Fa Tsai & Chung-Shi Tseng & Bor-Yuh Lin, 2020. "Phase Voltage-Oriented Control of a PMSG Wind Generator for Unity Power Factor Correction," Energies, MDPI, vol. 13(21), pages 1-22, October.
    3. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    4. Alizadeh, Mojtaba & Kojori, Shokrollah Shokri, 2015. "Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller," Energy, Elsevier, vol. 91(C), pages 610-629.
    5. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "On-line designed hybrid controller with adaptive observer for variable-speed wind generation system," Energy, Elsevier, vol. 35(7), pages 3022-3030.
    6. Mokhtari, Yacine & Rekioua, Djamila, 2018. "High performance of Maximum Power Point Tracking Using Ant Colony algorithm in wind turbine," Renewable Energy, Elsevier, vol. 126(C), pages 1055-1063.
    7. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    8. Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
    9. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    10. Mikulandrić, Robert & Lončar, Dražen & Cvetinović, Dejan & Spiridon, Gabriel, 2013. "Improvement of existing coal fired thermal power plants performance by control systems modifications," Energy, Elsevier, vol. 57(C), pages 55-65.
    11. Medjber, Ahmed & Guessoum, Abderrezak & Belmili, Hocine & Mellit, Adel, 2016. "New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system," Energy, Elsevier, vol. 106(C), pages 137-146.
    12. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems," Energy, Elsevier, vol. 36(1), pages 520-529.
    13. Song, Zhanfeng & Shi, Tingna & Xia, Changliang & Chen, Wei, 2012. "A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines," Energy, Elsevier, vol. 38(1), pages 104-117.
    14. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    15. Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
    16. Masmoudi, Abdelkarim & Abdelkafi, Achraf & Krichen, Lotfi, 2011. "Electric power generation based on variable speed wind turbine under load disturbance," Energy, Elsevier, vol. 36(8), pages 5016-5026.
    17. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
    18. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    19. Huang, Lili & Wang, Jun, 2018. "Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network," Energy, Elsevier, vol. 151(C), pages 875-888.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "On-line designed hybrid controller with adaptive observer for variable-speed wind generation system," Energy, Elsevier, vol. 35(7), pages 3022-3030.
    2. Sergiienko, N.Y. & da Silva, L.S.P. & Bachynski-Polić, E.E. & Cazzolato, B.S. & Arjomandi, M. & Ding, B., 2022. "Review of scaling laws applied to floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    5. Jun Wang & Yien Xu & Xiaoxin Wu & Jiejie Huang & Xinsong Zhang & Hongliang Yuan, 2021. "Enhanced Inertial Response Capability of a Variable Wind Energy Conversion System," Energies, MDPI, vol. 14(23), pages 1-13, December.
    6. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    7. Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.
    8. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    9. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2010. "Power optimization of wind turbines with data mining and evolutionary computation," Renewable Energy, Elsevier, vol. 35(3), pages 695-702.
    10. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    11. Kehinde A. Adeyeye & Nelson Ijumba & Jonathan S. Colton, 2021. "Multi-Parameter Optimization of Efficiency, Capital Cost and Mass of Ferris Wheel Turbine for Low Wind Speed Regions," Energies, MDPI, vol. 14(19), pages 1-18, September.
    12. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    13. Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
    14. Gayen, P.K. & Chatterjee, D. & Goswami, S.K., 2015. "Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 89(C), pages 461-472.
    15. Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
    16. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    17. Cao, Li-hua & Yu, Jing-wen & Li, Yong, 2016. "Study on the determination method of the normal value of relative internal efficiency of the last stage group of steam turbine," Energy, Elsevier, vol. 98(C), pages 101-107.
    18. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    19. Lin, Whei-Min & Hong, Chih-Ming, 2010. "Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system," Energy, Elsevier, vol. 35(6), pages 2440-2447.
    20. Song, Dongran & Yang, Jian & Su, Mei & Liu, Anfeng & Cai, Zili & Liu, Yao & Joo, Young Hoon, 2017. "A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation," Energy, Elsevier, vol. 138(C), pages 816-830.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:592-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.