IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i1p73-82.html
   My bibliography  Save this article

Experimental and theoretical investigation of diffuse solar radiation: Data and models quality tested for Egyptian sites

Author

Listed:
  • Elminir, Hamdy K.

Abstract

In order to obtain reliable irradiation data for the design, operation and economic assessment of solar power stations, eight widely used standard models predicting diffuse irradiation values are tested. A statistical analysis of hourly, daily and monthly correlations is carried out, using a 5yr data archive (1999–2003) of hourly global and diffuse solar irradiances obtained at five selected meteorological stations over greater Egypt area. The accuracy of the candidate correlations are performed in terms of the two widely used statistical indicators, mean bias and root mean square errors; standard deviation, standard error and F-test, were also introduced. The results indicate that the correlations relating the diffuse fraction (KD) with both clearness index (KT) and the sunshine fraction (S/SO) are more reliable for diffuse irradiation predictions in the Egyptian environment than using each variable separately.

Suggested Citation

  • Elminir, Hamdy K., 2007. "Experimental and theoretical investigation of diffuse solar radiation: Data and models quality tested for Egyptian sites," Energy, Elsevier, vol. 32(1), pages 73-82.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:1:p:73-82
    DOI: 10.1016/j.energy.2006.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gopinathan, K.K. & Soler, Alfonso, 1995. "Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range," Energy, Elsevier, vol. 20(7), pages 657-667.
    2. Trabea, A.A, 1999. "Technical note a multiple linear correlation for diffuse radiation from global solar radiation and sunshine data over Egypt," Renewable Energy, Elsevier, vol. 17(3), pages 411-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pillot, Benjamin & Al-Kurdi, Nadeem & Gervet, Carmen & Linguet, Laurent, 2020. "An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale," Applied Energy, Elsevier, vol. 260(C).
    2. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
    3. Pillot, Benjamin & de Siqueira, Sandro & Dias, João Batista, 2018. "Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case," Renewable Energy, Elsevier, vol. 127(C), pages 974-988.
    4. Koussa, Mustapha & Saheb-Koussa, Djohra & Hadji, Seddik, 2017. "Experimental investigation of simple solar radiation spectral model performances under a Mediterranean Algerian's climate," Energy, Elsevier, vol. 120(C), pages 751-773.
    5. Jiang, Yingni, 2009. "Estimation of monthly mean daily diffuse radiation in China," Applied Energy, Elsevier, vol. 86(9), pages 1458-1464, September.
    6. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    7. Bakirci, Kadir, 2021. "Prediction of diffuse radiation in solar energy applications: Turkey case study and compare with satellite data," Energy, Elsevier, vol. 237(C).
    8. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    9. Jiang, Yingni, 2008. "Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models," Energy Policy, Elsevier, vol. 36(10), pages 3833-3837, October.
    10. Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A comparative study to estimate daily diffuse solar radiation over India," Energy, Elsevier, vol. 34(11), pages 1792-1796.
    11. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    12. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    2. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    3. Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A comparative study to estimate daily diffuse solar radiation over India," Energy, Elsevier, vol. 34(11), pages 1792-1796.
    4. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    5. Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
    6. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    7. Li, Huashan & Bu, Xianbiao & Lian, Yongwang & Zhao, Liang & Ma, Weibin, 2012. "Further investigation of empirically derived models with multiple predictors in estimating monthly average daily diffuse solar radiation over China," Renewable Energy, Elsevier, vol. 44(C), pages 469-473.
    8. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    9. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    10. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    11. Rensheng, Chen & Ersi, Kang & Jianping, Yang & Shihua, Lu & Wenzhi, Zhao & Yongjian, Ding, 2004. "Estimation of horizontal diffuse solar radiation with measured daily data in China," Renewable Energy, Elsevier, vol. 29(5), pages 717-726.
    12. Francesco Pasanisi & Gaia Righini & Massimo D’Isidoro & Lina Vitali & Gino Briganti & Sergio Grauso & Lorenzo Moretti & Carlo Tebano & Gabriele Zanini & Mabafokeng Mahahabisa & Mosuoe Letuma & Muso Ra, 2021. "A Cooperation Project in Lesotho: Renewable Energy Potential Maps Embedded in a WebGIS Tool," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    13. Li, Huashan & Bu, Xianbiao & Long, Zhen & Zhao, Liang & Ma, Weibin, 2012. "Calculating the diffuse solar radiation in regions without solar radiation measurements," Energy, Elsevier, vol. 44(1), pages 611-615.
    14. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    15. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    16. Saioa Etxebarria Berrizbeitia & Eulalia Jadraque Gago & Tariq Muneer, 2020. "Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis," Energies, MDPI, vol. 13(3), pages 1-23, February.
    17. Chen, Rensheng & Kang, Ersi & Ji, Xibin & Yang, Jianping & Wang, Junhai, 2007. "An hourly solar radiation model under actual weather and terrain conditions: A case study in Heihe river basin," Energy, Elsevier, vol. 32(7), pages 1148-1157.
    18. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
    19. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    20. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:1:p:73-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.