IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022108.html
   My bibliography  Save this article

Multi-time scale game dispatching strategy for microgrid cluster with shared energy storage considering demand response uncertainty

Author

Listed:
  • Li, Pan
  • Li, Yaqi
  • Li, Ziqiang
  • Jia, Qingquan

Abstract

Integrating a high proportion of renewable energy causes severe power fluctuations in microgrid clusters, and the uncertainty of demand response (DR) on the user side effects the optimal scheduling accuracy of the microgrid cluster. The cooperative operation of shared energy storage (SES) and microgrid cluster can effectively suppress microgrid power fluctuations and reduce the operating costs of independently configured energy storage for microgrid clusters. To effectively reduce the microgrid cluster's operating costs and power fluctuations and achieve mutual benefits for the microgrids and the SES, the paper proposes a multi-time scale game dispatching strategy of the SES and the microgrids with the uncertainty of demand response. Firstly, the uncertainty models for price-based and incentive-based demand responses are established based on the Logistic function and fuzzy chance constraints, respectively. This approach aims to enhance the modeling accuracy of user response behavior and reduce the impact of modeling errors on scheduling plans. Secondly, considering the multi-time scale characteristic and uncertainty of user-side demand response, a multi-time scale master-slave game optimization dispatching model is developed. In this model, the SES operator acts as the leader in adjusting the capacity leasing price and charging-discharging price dynamically, and each microgrid acts as the follower in optimizing the rental capacity and charging-discharging strategy. The model is solved using an adaptive particle swarm algorithm integrated with the CPLEX solver to enhance the accuracy of the dispatching plan. Finally, the performance of the proposed strategy is verified through case analysis. The results demonstrate that the proposed model can reduce energy costs and power fluctuations of microgrids more effectively than the traditional single-timescale scheduling model and realize the mutual benefits for microgrids and SES.

Suggested Citation

  • Li, Pan & Li, Yaqi & Li, Ziqiang & Jia, Qingquan, 2025. "Multi-time scale game dispatching strategy for microgrid cluster with shared energy storage considering demand response uncertainty," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022108
    DOI: 10.1016/j.energy.2025.136568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Changming & Zhu, Yongqing & Zhang, Tianhan & Li, Qingsheng & Li, Zhen & Liang, Hongle & Liu, Chang & Ma, Yuanqian & Lin, Zhenzhi & Yang, Li, 2023. "Two-stage multiple cooperative games-based joint planning for shared energy storage provider and local integrated energy systems," Energy, Elsevier, vol. 284(C).
    2. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    3. Shahbaz, Muhammad & Nwani, Chinazaekpere & Bekun, Festus Victor & Gyamfi, Bright Akwasi & Agozie, Divine Q., 2022. "Discerning the role of renewable energy and energy efficiency in finding the path to cleaner consumption and production patterns: New insights from developing economies," Energy, Elsevier, vol. 260(C).
    4. Wang, Chutong & Zhang, Xiaoyan & Wang, Yucui & Xiong, Houbo & Ding, Xi & Guo, Chuangxin, 2023. "Pricing method of electric-thermal heterogeneous shared energy storage service," Energy, Elsevier, vol. 281(C).
    5. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    6. Dai, Xuemei & Li, Yaping & Zhang, Kaifeng & Feng, Wei, 2020. "A robust offering strategy for wind producers considering uncertainties of demand response and wind power," Applied Energy, Elsevier, vol. 279(C).
    7. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    8. Duan, Jiandong & Liu, Fan & Yang, Yao, 2022. "Optimal operation for integrated electricity and natural gas systems considering demand response uncertainties," Applied Energy, Elsevier, vol. 323(C).
    9. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Sorknæs, Peter & Johannsen, Rasmus M. & Korberg, Andrei D. & Nielsen, Tore B. & Petersen, Uni R. & Mathiesen, Brian V., 2022. "Electrification of the industrial sector in 100% renewable energy scenarios," Energy, Elsevier, vol. 254(PB).
    11. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Yuchen & Li, Qi & Huo, Shasha & Breaz, Elena & Chen, Weirong & Gao, Fei, 2024. "Optimal configuration for shared electric-hydrogen energy storage for multiple integrated energy systems with mobile hydrogen transportation," Renewable Energy, Elsevier, vol. 237(PC).
    2. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    3. Zhang, Ce & Hou, Beiran & Li, Minxia & Dang, Chaobin & Chen, Xun & Li, Xiuming & Han, Zongwei, 2025. "Feasibility analysis of multi-mode data center liquid cooling system integrated with Carnot battery energy storage module," Energy, Elsevier, vol. 320(C).
    4. Song, Xiaoling & Wu, Han & Zhang, Huqing & Guo, Jianxin & Zhang, Zhe & Peña-Mora, Feniosky, 2025. "Can retail electricity pricing promote microgrid operators to leverage shared energy storage services among internal aggregators?," Energy, Elsevier, vol. 314(C).
    5. Wang, Y.X. & Chen, J.J. & Zhao, Y.L. & Xu, B.Y., 2024. "Incorporate robust optimization and demand defense for optimal planning of shared rental energy storage in multi-user industrial park," Energy, Elsevier, vol. 301(C).
    6. Yuchen Liu & Zhenhai Dou & Zheng Wang & Jiaming Guo & Jingwei Zhao & Wenliang Yin, 2024. "Optimal Configuration of Electricity-Heat Integrated Energy Storage Supplier and Multi-Microgrid System Scheduling Strategy Considering Demand Response," Energies, MDPI, vol. 17(21), pages 1-23, October.
    7. Song, Xiaoling & Zhang, Huqing & Fan, Lurong & Zhang, Zhe & Peña-Mora, Feniosky, 2023. "Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side," Energy, Elsevier, vol. 282(C).
    8. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    9. He, Yan & Xiao, Jiang-Wen & Wang, Yan-Wu & Liu, Zhi-Wei & He, Shi-Yuan, 2025. "Subjective-uncertainty-oriented dynamic renting framework for energy storage sharing," Applied Energy, Elsevier, vol. 378(PA).
    10. Fang, Guochang & Meng, Aoxiang & Wang, Qingling & Zhou, Huixin & Tian, Lixin, 2024. "Analysis of the evolution path of new energy system under polymorphic uncertainty—A case study of China," Energy, Elsevier, vol. 300(C).
    11. Dong, Min & Su, Juan & Zhao, Jing & Dong, Yanjun & Du, Songhuai, 2024. "Fraudulent balancing operation strategy for multi-agent P2P electricity trading considering neighborhood scene public energy storage," Applied Energy, Elsevier, vol. 375(C).
    12. Kui Hua & Qingshan Xu & Shujuan Li & Yuanxing Xia, 2025. "Sample-Based Optimal Dispatch of Shared Energy Storage in Community Microgrids Considering Uncertainty," Energies, MDPI, vol. 18(7), pages 1-21, April.
    13. Xie, Yulong & Li, Lee & Hou, Tianyu & Luo, Kang & Xu, Zhenyu & Dai, Mingcheng & Zhang, Lixiong, 2024. "Shared energy storage configuration in distribution networks: A multi-agent tri-level programming approach," Applied Energy, Elsevier, vol. 372(C).
    14. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    15. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).
    16. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    17. Paspuel Cristian & Luis Tipán, 2024. "Multi-Objetive Dispatching in Multi-Area Power Systems Using the Fuzzy Satisficing Method," Energies, MDPI, vol. 17(20), pages 1-36, October.
    18. Bright Akwasi Gyamfi & Divine Q. Agozie & Festus Victor Bekun & Cihat Köksal, 2024. "Beyond the Environmental Kuznets Curve in South Asian economies: accounting for the combined effect of information and communication technology, human development and urbanization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11263-11288, May.
    19. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    20. Liu, Jinjin & Xiao, Xin, 2023. "Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application," Energy, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.