IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225020997.html
   My bibliography  Save this article

An optimal multi-scale ensemble transformer for carbon emission allowance price prediction based on time series patching and two-stage stabilization

Author

Listed:
  • Zhang, Xin
  • Wang, Jujie
  • He, Xuecheng

Abstract

Accurate carbon price forecasting is crucial for carbon dioxide emission reduction and low-carbon transition of social development. This study proposes an optimal multi-scale ensemble transformer for carbon price prediction, leveraging time series patching and two-stage stabilization. Firstly, an adaptive feature extraction and entropy recombination method is constructed, which can effectively mine the latent features in the sequence. Through modal fusion, information of different scales can be fully integrated to perceive the dynamic change of carbon price. Then, an enhanced Transformer prediction model is constructed by the time series patching and two-stage stabilization, which can capture local temporal information and long-term dependencies more effectively. Finally, considering the different contributions of different subsequences, an intelligent weighted integration algorithm is designed to determine the optimal weight for each sequence. Empirical tests of four Chinese carbon markets show that the mean absolute percentage error (MAPE) of the forecast results is in the range of 0.93 %–2.18 % surpassing all control models. The results demonstrate the model's accuracy and robustness, providing a reliable tool for carbon price formulation, optimizing resource allocation, and supporting the healthy development of carbon markets.

Suggested Citation

  • Zhang, Xin & Wang, Jujie & He, Xuecheng, 2025. "An optimal multi-scale ensemble transformer for carbon emission allowance price prediction based on time series patching and two-stage stabilization," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225020997
    DOI: 10.1016/j.energy.2025.136457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225020997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jujie & Xu, Shulian & Shu, Shuqin, 2024. "An optimal weight heterogeneous integrated carbon price prediction model based on temporal information extraction and specific comprehensive feature selection," Energy, Elsevier, vol. 312(C).
    2. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "Carbon price volatility: Evidence from EU ETS," Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
    3. Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
    4. Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
    5. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    6. Sun, Wei & Zhang, Junjian, 2022. "A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction," Energy, Elsevier, vol. 253(C).
    7. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    8. Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2011. "How does carbon price change? Evidences from EU ETS," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(2/3/4), pages 132-144.
    9. Nascimento, Erick Giovani Sperandio & de Melo, Talison A.C. & Moreira, Davidson M., 2023. "A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy," Energy, Elsevier, vol. 278(C).
    10. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    11. Ding, Lili & Zhang, Rui & Zhao, Xin, 2024. "Forecasting carbon price in China unified carbon market using a novel hybrid method with three-stage algorithm and long short-term memory neural networks," Energy, Elsevier, vol. 288(C).
    12. Frank Venmans, 2015. "Capital market response to emission allowance prices: a multivariate GARCH approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 577-620, October.
    13. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    14. Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
    15. Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
    16. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Post-Print halshs-04250221, HAL.
    17. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    18. Wang, Ning & Guo, Ziyu & Shang, Dawei & Li, Keyuyang, 2024. "Carbon trading price forecasting in digitalization social change era using an explainable machine learning approach: The case of China as emerging country evidence," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    19. Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
    20. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Annals of Operations Research, Springer, vol. 281(1), pages 373-395, October.
    21. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    22. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    23. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    24. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    25. Sayed, Gehad Ismail & Abd El-Latif, Eman I. & Darwish, Ashraf & Snasel, Vaclav & Hassanien, Aboul Ella, 2024. "An optimized and interpretable carbon price prediction: Explainable deep learning model," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    26. Cuiling Song, 2024. "Analysis of China’s carbon market price fluctuation and international carbon credit financing mechanism using random forest model," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-25, March.
    27. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    2. Liu, Shuihan & Li, Mingchen & Yang, Kun & Wei, Yunjie & Wang, Shouyang, 2025. "From forecasting to trading: A multimodal-data-driven approach to reversing carbon market losses," Energy Economics, Elsevier, vol. 144(C).
    3. Dinggao Liu & Liuqing Wang & Shuo Lin & Zhenpeng Tang, 2025. "A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
    4. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    5. Wang, Yue & Wang, Zhong & Luo, Yuyan, 2024. "A hybrid carbon price forecasting model combining time series clustering and data augmentation," Energy, Elsevier, vol. 308(C).
    6. Canran Xiao & Yongmei Liu, 2025. "A Multifrequency Data Fusion Deep Learning Model for Carbon Price Prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 436-458, March.
    7. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    8. Wang, Jujie & Xu, Shulian & Shu, Shuqin, 2024. "An optimal weight heterogeneous integrated carbon price prediction model based on temporal information extraction and specific comprehensive feature selection," Energy, Elsevier, vol. 312(C).
    9. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    10. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    11. Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
    12. Zhuolin Wu & Jiaqi Zhou & Xiaobing Yu, 2025. "Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition," Sustainability, MDPI, vol. 17(12), pages 1-37, June.
    13. Jiang, Meiqin & Che, Jinxing & Li, Shuying & Hu, Kun & Xu, Yifan, 2025. "Incorporating key features from structured and unstructured data for enhanced carbon trading price forecasting with interpretability analysis," Applied Energy, Elsevier, vol. 382(C).
    14. Jujie Wang & Maolin He, 2025. "Extended decomposition ensemble framework based on full data analysis and optimized combination with relaxed boundary for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 909-942, January.
    15. Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    17. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    18. Xian, Sidong & Feng, Miaomiao & Cheng, Yue, 2023. "Incremental nonlinear trend fuzzy granulation for carbon trading time series forecast," Applied Energy, Elsevier, vol. 352(C).
    19. Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
    20. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225020997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.