IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225017827.html
   My bibliography  Save this article

Study on a novel liquefaction-distillation process for coalbed methane recovery using thermoacoustic cryocoolers

Author

Listed:
  • Dong, Xuebo
  • Sun, Daming
  • Shen, Keyi
  • Yu, Hongyuan
  • Shen, Qie

Abstract

The utilization of coalbed methane (CBM) is significant for coal mine safety, greenhouse effect reduction, and clean energy supplement. A novel CBM liquefaction-distillation process for LNG production using a four-stage thermoacoustically-driven pulse tube cryocooler (TDPTC) is proposed and studied numerically. The optimizations are conducted using genetic algorithm under varying TDPTC arrangements and feed CBM conditions, with specific power consumption (SPC) as the objective function. The effects of position of stream heating reboiler (PSR) on process performance are analyzed. Sensitivity analysis is performed to explore the impacts of design parameters on process performance. It is found that SPC is significantly reduced by choosing an appropriate PSR and TDPTC arrangement. To ensure optimal process performance, pipework and control valves should be arranged in system to adjust to the best PSR and TDPTC arrangements corresponding to feed CBM conditions. Moreover, SPC decreases with rising methane content and pressure of feed CBM. Besides, compressor discharge pressure has the greatest impact on SPC, exhibiting an average variation rate of 0.159 kW h/(Nm3∙MPa). The highest exergy destruction occurs in either two-stage compressor with water coolers or J-T valve. With TDPTC's advantages of being heat-driven, highly reliable, compact, and eco-friendly, the proposed process holds great promise for small-scale and scattered CBM reserves.

Suggested Citation

  • Dong, Xuebo & Sun, Daming & Shen, Keyi & Yu, Hongyuan & Shen, Qie, 2025. "Study on a novel liquefaction-distillation process for coalbed methane recovery using thermoacoustic cryocoolers," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017827
    DOI: 10.1016/j.energy.2025.136140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Q.Y. & Wang, L. & Ju, Y.L., 2011. "Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane," Applied Energy, Elsevier, vol. 88(9), pages 2934-2939.
    2. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
    3. Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
    4. He, Tianbiao & Liu, Zuming & Ju, Yonglin & Parvez, Ashak Mahmud, 2019. "A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant," Energy, Elsevier, vol. 167(C), pages 1-12.
    5. Wang, Chenghong & Sun, Daming & Shen, Qie & Shen, Keyi & Duan, Yuanyuan, 2024. "Optimization of coalbed methane liquefaction process based on parallel nitrogen reverse Brayton cycle under varying methane contents and liquefaction ratios," Energy, Elsevier, vol. 293(C).
    6. Wang, Chenghong & Sun, Daming & Shen, Qie & Shen, Keyi & Linghu, Jianshe & Wang, Xiaodong, 2023. "Techno-economic analysis on nitrogen reverse Brayton cycles for efficient coalbed methane liquefaction process," Energy, Elsevier, vol. 280(C).
    7. Wang, Chenghong & Shen, Qie & Zhang, Jie & Qiao, Xin & Yu, Hongyuan & Shen, Keyi & Sun, Daming, 2023. "Study on a coalbed methane liquefaction system based on thermoacoustic refrigeration method," Energy, Elsevier, vol. 262(PB).
    8. Wang, Yuhong & Chen, Xi & Xu, Jingxuan & Lu, Yilin, 2025. "Thermodynamic and economic performance analysis of a liquid carbon dioxide energy storage system coupled with absorption refrigeration cycle," Energy, Elsevier, vol. 319(C).
    9. Gao, Ting & Lin, Wensheng & Gu, Anzhong & Gu, Min, 2010. "Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling," Applied Energy, Elsevier, vol. 87(7), pages 2142-2147, July.
    10. Wu, Jitan & Ju, Yonglin, 2019. "Design and optimization of natural gas liquefaction process using brazed plate heat exchangers based on the modified single mixed refrigerant process," Energy, Elsevier, vol. 186(C).
    11. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chenghong & Sun, Daming & Shen, Qie & Shen, Keyi & Linghu, Jianshe & Wang, Xiaodong, 2023. "Techno-economic analysis on nitrogen reverse Brayton cycles for efficient coalbed methane liquefaction process," Energy, Elsevier, vol. 280(C).
    2. Bahram Ghorbani & Sohrab Zendehboudi & Noori M. Cata Saady, 2025. "Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization," Energies, MDPI, vol. 18(6), pages 1-87, March.
    3. Wang, Chenghong & Sun, Daming & Shen, Qie & Duan, Yuanyuan & Huang, Xiaoxue, 2024. "A re-liquefaction process of LNG boil-off gas using an improved Kapitsa cycle: Eliminating the BOG compressor," Energy, Elsevier, vol. 304(C).
    4. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    5. Huang, Yuping & Zheng, Qipeng P. & Fan, Neng & Aminian, Kashy, 2014. "Optimal scheduling for enhanced coal bed methane production through CO2 injection," Applied Energy, Elsevier, vol. 113(C), pages 1475-1483.
    6. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    7. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Zhang, Guolutiao & Wang, Ziyan & Wu, Weifeng & Wang, Shunsen & Zhao, Pan, 2023. "Modeling and thermodynamic analysis of a novel combined cooling and power system composed of alkali metal thermal electric converter and looped multistage thermoacoustically-driven refrigerator," Energy, Elsevier, vol. 263(PD).
    8. Wang, Chenghong & Sun, Daming & Shen, Qie & Shen, Keyi & Duan, Yuanyuan, 2024. "Optimization of coalbed methane liquefaction process based on parallel nitrogen reverse Brayton cycle under varying methane contents and liquefaction ratios," Energy, Elsevier, vol. 293(C).
    9. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2020. "Technical and economic optimization of expander-based small-scale natural gas liquefaction processes with absorption precooling cycle," Energy, Elsevier, vol. 191(C).
    10. Xiao, Lei & Wu, Zhanghua & Luo, Ercang, 2025. "Ultra-efficient thermoacoustically-driven refrigeration: Detailed mechanism and optimization analysis," Energy, Elsevier, vol. 324(C).
    11. Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
    12. Qyyum, Muhammad Abdul & He, Tianbiao & Qadeer, Kinza & Mao, Ning & Lee, Sanggyu & Lee, Moonyong, 2020. "Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction," Applied Energy, Elsevier, vol. 268(C).
    13. Lin, Yaoting & Zhou, Wei & Chauhdary, Sohaib Tahir & Zuo, Wenshuai, 2025. "4E assessment of a geothermal-driven combined power and cooling system coupled with a liquefied natural gas cold energy recovery unit," Renewable Energy, Elsevier, vol. 240(C).
    14. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    15. Luo, Jing & Zhang, Limin & Chen, Yanyan & Sun, Yanlei & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2023. "Numerical study on a free-piston Stirling electric generator with a gas-spring-postpositioned displacer for high-power applications," Energy, Elsevier, vol. 271(C).
    16. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    17. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    18. Hu, Yiwei & Xu, Jingyuan & Zhao, Dan & Yang, Rui & Hu, Jianying & Luo, Ercang, 2024. "Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat," Applied Energy, Elsevier, vol. 361(C).
    19. Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
    20. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.