IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014926.html
   My bibliography  Save this article

Impurity-driven variations in CO2 critical flow dynamics: Modeling approaches for enhanced CCS safety

Author

Listed:
  • Liao, Haifan
  • Wang, Xinying
  • Yang, Kuang
  • Hou, Zhenghui
  • Wang, Haijun

Abstract

Carbon Capture and Storage (CCS) is a vital technology for reducing emissions, yet ensuring safe transport of CO2 and preparedness for potential leak incidents remains critical for public acceptance. Given that captured CO2 inevitably contains various impurities, it is essential to evaluate their influence on decompression behavior and critical mass flux predictions during pipeline ruptures. In this study, we investigate how different impurity compositions affect decompression dynamics and critical mass flux through classical critical flow models, in conjunction with impurity levels specified by current CCS standards. Initially, several models were evaluated for predicting the critical mass flux of pure CO2, with results indicating that the Delayed Equilibrium Model (DEM) generally outperforms others in terms of predictive accuracy. Notably, the presence of impurities elevates the pressure plateau during phase transitions, which can lead to an underestimation of critical mass flux when using standard models. Furthermore, the GERG-2008 equation of state (EOS) yields a higher pressure plateau compared to the Peng-Robinson (PR) EOS, consequently predicting a lower critical mass flux. The study also highlights differences in acoustic properties between DEM and the Homogeneous Equilibrium Model (HEM). Specifically, DEM exhibits a higher speed of sound at low void fractions, resulting in higher critical mass flux predictions under impurity-rich conditions. Recognizing the potential safety risks and economic implications of these discrepancies, we propose a new correlation that adjusts the critical mass flux of pure CO2 by incorporating thermodynamic parameters to account for impurity effects. This approach provides a practical and efficient method for improving engineering calculations and ensuring more reliable leakage response designs. Overall, our findings offer critical insights for enhancing safety management in CCS operations and support the broader integration of CCS technologies in real-world applications.

Suggested Citation

  • Liao, Haifan & Wang, Xinying & Yang, Kuang & Hou, Zhenghui & Wang, Haijun, 2025. "Impurity-driven variations in CO2 critical flow dynamics: Modeling approaches for enhanced CCS safety," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014926
    DOI: 10.1016/j.energy.2025.135850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dall’Acqua, D. & Terenzi, A. & Leporini, M. & D’Alessandro, V. & Giacchetta, G. & Marchetti, B., 2017. "A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state," Applied Energy, Elsevier, vol. 206(C), pages 1432-1445.
    2. Li, H. & Yan, J., 2009. "Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 86(12), pages 2760-2770, December.
    3. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    4. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    5. Jonas Meckling & Eric Biber, 2021. "A policy roadmap for negative emissions using direct air capture," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    6. Simonsen, Kenneth René & Hansen, Dennis Severin & Pedersen, Simon, 2024. "Challenges in CO2 transportation: Trends and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).
    2. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Hu, Yanwei & Yang, Kai & Cao, Zhangao & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the decompression behavior during large-scale pipeline puncture releases of CO2 with various N2 compositions: Experiments and mechanism analysis," Energy, Elsevier, vol. 296(C).
    4. Zhu, Jianlu & Wu, Jialing & Xie, Naiya & Li, Zihe & Hu, Qihui & Li, Yuxing, 2024. "Study on water hammer phase transition characteristics of dense/liquid phase CO2 pipeline," Energy, Elsevier, vol. 311(C).
    5. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    6. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    8. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    9. Yu, Shuai & Yan, Xingqing & He, Yifan & Hu, Yanwei & Qiao, Fanfan & Yang, Kai & Cao, Zhangao & Chen, Lei & Liu, Zhenxi & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the effect of valve openings and multi-stage throttling structures on the pressure and temperature during CO2 pipeline venting processes," Energy, Elsevier, vol. 308(C).
    10. Han, Jinju & Lee, Minkyu & Lee, Wonsuk & Lee, Youngsoo & Sung, Wonmo, 2016. "Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding," Applied Energy, Elsevier, vol. 161(C), pages 85-91.
    11. Mahmoodpour, Saeed & Amooie, Mohammad Amin & Rostami, Behzad & Bahrami, Flora, 2020. "Effect of gas impurity on the convective dissolution of CO2 in porous media," Energy, Elsevier, vol. 199(C).
    12. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    13. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
    14. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    15. Goran Durakovic & Geir Skaugen, 2019. "Analysis of Thermodynamic Models for Simulation and Optimisation of Organic Rankine Cycles," Energies, MDPI, vol. 12(17), pages 1-12, August.
    16. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    17. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Evangeline, S. Ida & Darwin, S., 2025. "The role of carbon dioxide in enhancing geothermal energy: A review of current developments and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    19. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    20. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.