IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225011168.html
   My bibliography  Save this article

Efficient performance analysis and optimization of thermoelectric generators for low-grade heat sources: A simplified equivalent numerical modeling approach

Author

Listed:
  • Liao, Jiaxi
  • Xie, Heping
  • Wang, Jun
  • Sun, Licheng
  • Long, Xiting
  • Li, Cunbao
  • Gao, Tianyi
  • Xia, Entong
  • Liu, Zhichao

Abstract

Thermoelectric generators (TEGs) have garnered increased attention for utilizing various heat sources at different temperatures, ranging from industrial waste heat to geothermal energy. The characterization and optimization of the thermal-electric coupling performance of TEGs is of paramount importance and has been extensively explored by numerical modeling. However, the intricate geometric details of TEGs, which typically comprise hundreds of thermoelectric legs, result in significant computational complexity and time consumption. This paper introduces a simplified modeling method where each thermoelectric module (TEM) is treated as a representative block with equivalent thermal-electric properties. The proposed approach was validated through comparison with both experimental data and detailed modeling results, while significantly reducing the calculation time by a factor of 246. Using this simplified modeling method, the key factors contributing to TEG performance loss were identified, and several optimization strategies were investigated. Results show that incorporating metal foam into the heat sinks of the TEG system enhances the hydraulic-thermal-electrical performance. By optimizing the cooling water flow rate, the cold-side temperature of the TEMs was reduced by 4.77 K compared to the reference case at a heat source temperature of 373.15 K. This results in an output power of 4.66 W, a net power of 4.60 W, and a net efficiency of 1.20 %, which are increased by 13.0 %, 15.6 %, and 9.1 %, respectively. These findings validate the efficiency and effectiveness of this streamlined modeling approach for TEGs, offering a valuable strategy for performance analysis and design of large-scale devices.

Suggested Citation

  • Liao, Jiaxi & Xie, Heping & Wang, Jun & Sun, Licheng & Long, Xiting & Li, Cunbao & Gao, Tianyi & Xia, Entong & Liu, Zhichao, 2025. "Efficient performance analysis and optimization of thermoelectric generators for low-grade heat sources: A simplified equivalent numerical modeling approach," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011168
    DOI: 10.1016/j.energy.2025.135474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Ting & Lu, Xing & Pandit, Jaideep & Ekkad, Srinath V. & Huxtable, Scott T. & Deshpande, Samruddhi & Wang, Qiu-wang, 2017. "Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators," Applied Energy, Elsevier, vol. 185(P2), pages 1343-1354.
    2. Sun, Dongfang & Han, Xue & Wang, Haoqing & Shen, Limei & Gao, Cai & Niu, Jingyu & Liu, Xiangnong & Ye, Jianming & Yao, Qiufeng, 2024. "Investigation on the linear cooling method of microfluidic chip based on thermoelectric cooler," Energy, Elsevier, vol. 308(C).
    3. Guo, Xinru & Zhang, Houcheng & Yuan, Jinliang & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Hou, Shujin, 2019. "Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 762-770.
    4. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    5. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    6. Poddar, V.S. & Ranawade, V.A. & Dhokey, N.B., 2022. "Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance," Renewable Energy, Elsevier, vol. 182(C), pages 817-826.
    7. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Narasingamurthi, Kulasekharan & Saidur, R., 2022. "Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study," Renewable Energy, Elsevier, vol. 201(P1), pages 224-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).
    2. Ji, Jiahong & Gao, Yuanzhi & Zhang, Xiaosong, 2024. "Performance evaluation of photovoltaic-phase change material-thermoelectric system through parametric study," Energy, Elsevier, vol. 307(C).
    3. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    4. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    5. Zhao, Ru & Zhu, Na & Zhao, Xudong & Luo, Zhenyu & Chang, Jianpei, 2025. "Multi-objective optimization of a novel photovoltaic-thermoelectric generator system based on hybrid enhanced algorithm," Energy, Elsevier, vol. 319(C).
    6. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    7. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    8. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    9. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    10. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    11. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    12. Zhaoda Zhong & Samuel Simon Araya & Vincenzo Liso & Jimin Zhu, 2023. "Multi-Objective Assessment and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell: Steady-State Analysis," Energies, MDPI, vol. 16(24), pages 1-21, December.
    13. Li, Bingcheng & Wang, Xianyi & Li, Nianqi & Tam, Lapmou & Zeng, Min & Wang, Qiuwang, 2025. "Thermal management of integrated circuits in energy systems: Flow boiling in microchannels with multiple ultra-high heat flux sources," Energy, Elsevier, vol. 322(C).
    14. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    15. Yi-Cheng Chung & Chun-I Wu, 2024. "Enhancing Ocean Thermal Energy Conversion Performance: Optimized Thermoelectric Generator-Integrated Heat Exchangers with Longitudinal Vortex Generators," Energies, MDPI, vol. 17(2), pages 1-19, January.
    16. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes, 2023. "A Methodological Approach of Predicting the Performance of Thermoelectric Generators with Temperature-Dependent Properties and Convection Heat Losses," Energies, MDPI, vol. 16(20), pages 1-24, October.
    17. Hao, Junhong & Qiu, Huachen & Ren, Jianxun & Ge, Zhihua & Chen, Qun & Du, Xiaoze, 2020. "Multi-parameters analysis and optimization of a typical thermoelectric cooler based on the dimensional analysis and experimental validation," Energy, Elsevier, vol. 205(C).
    18. Wang, Chenfang & Liu, Shihao & Zhan, Shuming & Ou, Mengmeng & Wei, Jiangjun & Cheng, Xiaozhang & Zhuge, Weilin & Zhang, Yangjun, 2024. "Transcritical dual-loop Rankine cycle waste heat recovery system for China VI emission standards natural gas engine," Energy, Elsevier, vol. 292(C).
    19. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2023. "Performance assessment of the hybrid PV-MCHP-TE system integrated with PCM in all-day operation: A preliminary numerical investigation," Energy, Elsevier, vol. 278(PA).
    20. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Liang, Zhaojun & Liang, Yifan & Li, Yanzhe, 2019. "Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery," Applied Energy, Elsevier, vol. 239(C), pages 425-433.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.