IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010606.html
   My bibliography  Save this article

Nash-Stackelberg-Nash three-layer mixed game optimal control strategy for multi-integrated energy systems considering multiple uncertainties

Author

Listed:
  • Li, Xinyan
  • Wu, Nan
  • Lei, Lin

Abstract

With the development of distributed energy technology, traditional energy users are transitioning to energy prosumer (EP) with independent power generation capacity. To further improve the absorption rate of renewable energy and the interactive benefits of each subject, and solve the problem of cooperative optimization operation of integrated energy system (IES) with multiple EPs in the same distribution network. In this paper, a multi-IES three-layer mixed game optimal control strategy considering multiple uncertainties is proposed. Chance constrained programming and robust optimization method are used to deal with the uncertainty of renewable energy and electricity price respectively. The upper level determines the electricity price and heat price to minimize the IES operating cost, and the lower level responds to the IES electric heating decision to maximize the EP benefit. Then, Karush-Kuhn-Tucker (KKT) condition is used to solve the Stackelberg game between IES and EP by combining Big-M and McCormick method, and the cooperative game between EP and IES is solved by combining alternating direction multiplier method (ADMM). Case shows that the strategy proposed can effectively solve the complex model with three-layer mixed game, significantly improves total system revenue by 4.97 % and reduces total carbon emissions by 20.69 %.

Suggested Citation

  • Li, Xinyan & Wu, Nan & Lei, Lin, 2025. "Nash-Stackelberg-Nash three-layer mixed game optimal control strategy for multi-integrated energy systems considering multiple uncertainties," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010606
    DOI: 10.1016/j.energy.2025.135418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    2. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    3. Haibing Wang & Chengmin Wang & Weiqing Sun & Muhammad Qasim Khan, 2022. "Energy Pricing and Management for the Integrated Energy Service Provider: A Stochastic Stackelberg Game Approach," Energies, MDPI, vol. 15(19), pages 1-15, October.
    4. Li, Xu & Deng, Jianhua & Liu, Jichun, 2024. "A two-layer and three-stage dynamic demand response game model considering the out of sync response for gases generators," Renewable Energy, Elsevier, vol. 228(C).
    5. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    6. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
    7. Zhang, Rongquan & Bu, Siqi & Li, Gangqiang, 2024. "Multi-market P2P trading of cooling–heating-power-hydrogen integrated energy systems: An equilibrium-heuristic online prediction optimization approach," Applied Energy, Elsevier, vol. 367(C).
    8. Yan, Yi & Liu, Mingqi & Tian, Chongyi & Li, Ji & Li, Ke, 2024. "Multi-layer game theory based operation optimisation of ICES considering improved independent market participant models and dedicated distributed algorithms," Applied Energy, Elsevier, vol. 373(C).
    9. Sun, Guoqiang & Shen, Sichen & Chen, Sheng & Zhou, Yizhou & Wei, Zhinong, 2022. "Bidding strategy for a prosumer aggregator with stochastic renewable energy production in energy and reserve markets," Renewable Energy, Elsevier, vol. 191(C), pages 278-290.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    2. Gao, Jin & Shao, Zhenguo & Chen, Feixiong & Lak, Mohammadreza, 2024. "Robust optimization for integrated energy systems based on multi-energy trading," Energy, Elsevier, vol. 308(C).
    3. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    4. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    5. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    6. Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
    7. Li, Xinyan & Wu, Nan, 2024. "A two-stage distributed robust optimal control strategy for energy collaboration in multi-regional integrated energy systems based on cooperative game," Energy, Elsevier, vol. 305(C).
    8. Chen, Yuzhu & Guo, Weimin & Du, Na & Yang, Kun & Wang, Jiangjiang, 2024. "Master slave game-based optimization of an off-grid combined cooling and power system coupled with solar thermal and photovoltaics considering carbon cost allocation," Renewable Energy, Elsevier, vol. 229(C).
    9. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    10. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    11. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    12. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    13. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    14. Ziming Zhou & Zihao Wang & Yanan Zhang & Xiaoxue Wang, 2024. "Nash Bargaining-Based Coordinated Frequency-Constrained Dispatch for Distribution Networks and Microgrids," Energies, MDPI, vol. 17(22), pages 1-27, November.
    15. Wu, Biao & Zhang, Shaohua & Yuan, Chenxin & Wang, Xian & Wang, Fei & Zhang, Shengqi, 2024. "Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory," Energy, Elsevier, vol. 313(C).
    16. Ren, Xiaoxiao & Wang, Jinshi & Yang, Sifan & Zhao, Quanbin & Jia, Yifan & Ou, Kejie & Hu, Guangtao & Yan, Junjie, 2025. "A novel multi-objective Stackelberg game model for multi-energy dynamic pricing and flexible scheduling in distributed multi-energy system," Energy, Elsevier, vol. 325(C).
    17. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    18. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    19. Chenhao Sun & Xiwei Jiang & Zhiwei Jia & Kun Yu & Sheng Xiang & Jianhong Su, 2023. "An Optimization Ensemble for Integrated Energy System Configuration Strategy Incorporating Demand–Supply Coordination," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    20. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.