IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010473.html
   My bibliography  Save this article

An adaptive performance map generation method through shape feature fusion for the gas turbine compressor

Author

Listed:
  • Huang, Qinni
  • Gu, Xiwen
  • Zhang, Hongwei
  • Sun, Jiahao
  • Yang, Shixi

Abstract

Accurate generation of the compressor performance map (CPM) is necessary for building high-precision physical models of gas turbines. The applicability and generalization ability of the current CPM generation method are relatively poor under off-design operating conditions, and the extrapolability of the generated curves is debatable. This paper proposes an adaptive performance map generation method through shape feature fusion (SFF-AG) for the gas turbine compressor. A framework for the generation and optimization of the CPM curve database is developed. The nonlinear features of the CPM curves are extracted and fused by the variational autoencoder. Different CPM curves conforming to the physical shape are reconstructed to build a high-quality CPM curve database. Correction factors are introduced to adaptively correct the CPM curves by genetic algorithm. The proposed method is verified on an aircraft engine and an in-service industrial gas turbine and compared with other methods. The results show that the method can generate CPM with higher accuracy, better generalization ability and extrapolability, and better capture the nonlinear behavior of different types of gas turbines. With the continuous updating and improvement of the initial CPM curve database with richer curve shape features, the CPM curve database constructed by SFF-AG will be more complete.

Suggested Citation

  • Huang, Qinni & Gu, Xiwen & Zhang, Hongwei & Sun, Jiahao & Yang, Shixi, 2025. "An adaptive performance map generation method through shape feature fusion for the gas turbine compressor," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010473
    DOI: 10.1016/j.energy.2025.135405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Jianzhong & Yan, Zichen & Han, Ying & Zhu, Xinyun & Yang, Caiqiong, 2023. "Deep learning framework for gas turbine performance digital twin and degradation prognostics from airline operator perspective," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    2. Yazar, Isil & Yavuz, Hasan Serhan & Yavuz, Arzu Altin, 2017. "Comparison of various regression models for predicting compressor and turbine performance parameters," Energy, Elsevier, vol. 140(P2), pages 1398-1406.
    3. Kim, Sangjo & Kim, Kuisoon & Son, Changmin, 2020. "A new transient performance adaptation method for an aero gas turbine engine," Energy, Elsevier, vol. 193(C).
    4. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    5. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    6. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2014. "A component map tuning method for performance prediction and diagnostics of gas turbine compressors," Applied Energy, Elsevier, vol. 135(C), pages 572-585.
    7. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    8. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    2. Kilic, Ugur & Yalin, Gorkem & Cam, Omer, 2023. "Digital twin for Electronic Centralized Aircraft Monitoring by machine learning algorithms," Energy, Elsevier, vol. 283(C).
    3. Chen, Yu-Zhi & Zhang, Wei-Gang & Tsoutsanis, Elias & Zhao, Junjie & Tam, Ivan C.K. & Gou, Lin-Feng, 2025. "An advanced performance-based method for soft and abrupt fault diagnosis of industrial gas turbines," Energy, Elsevier, vol. 321(C).
    4. Duan, Jiandong & Fan, Shaogui & An, Quntao & Sun, Li & Wang, Guanglin, 2017. "A comparison of micro gas turbine operation modes for optimal efficiency based on a nonlinear model," Energy, Elsevier, vol. 134(C), pages 400-411.
    5. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    6. Cui, Zhiquan & Yan, Zhiqi & Zhao, Minghang & Zhong, Shisheng, 2022. "Gas path parameter prediction of aero-engine based on an autoregressive discrete convolution sum process neural network," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    7. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).
    8. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    9. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    10. Likun Ren & Haiqin Qin & Zhenbo Xie & Jing Xie & Bianjiang Li, 2022. "A Thermodynamics-Oriented and Neural Network-Based Hybrid Model for Military Turbofan Engines," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    11. Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
    12. Yu, Bosheng & Cao, Li'ang & Xie, Daxing & Chen, Jinwei & Zhang, Huisheng, 2025. "Fault diagnosis of gas turbine based on feature fusion cascade neural network," Energy, Elsevier, vol. 321(C).
    13. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    14. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    15. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    16. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    17. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    18. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    19. Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).
    20. Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.