IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225009314.html
   My bibliography  Save this article

Liquid organic hydrogen carriers energy storage in urban-industrial symbiosis through process integration

Author

Listed:
  • Wan Abdullah, Wan Aina Syahirah
  • Liew, Peng Yen
  • Ismail, Imran
  • Ho, Wai Shin
  • Woon, Kok Sin

Abstract

The urban industrial symbiosis is a concept that reasonably represents the application of the circular economy concept, in which the energy symbiosis can reduce overall fuel consumption and ultimately reduce carbon emissions. Energy storage is one of the essential components for stabilising the energy supply and demand fluctuations due to renewable energy, urban energy consumption, and industrial consumption. Hydrogen-based energy storage is a promising storage option, along with heat or battery storage. This study proposes a Pinch-based methodology for targeting energy savings for thermal and power systems. This paper introduces the Hydrogen Storage Cascade (H2SC) to target the hydrogen-based energy storage capacity, which is currently assumed based on liquid organic hydrogen carriers (LOHC) storage, which chemically bonds hydrogen molecules to stable organic liquid carriers to avoid the compression or liquefication of hydrogen to make it saver and more cost-effective. The methodology can be adopted for other types of hydrogen-based energy storage systems. An illustrative case study with industrial processes, urban residential and renewable energy to demonstrate the proposed methodology using LOHC-based energy storage. This study found that the LOHC-based energy storage can reduce the energy utility cost by 59,148 million MYR/y (35.8 % reduction). The study compares the hydrogen-based storage system with the heat and battery storage systems. It is found that a power storage system has a great potential to reduce utility costs with a payback period of 0.89 year. The capital cost calculated for the hydrogen energy storage system is too high, making it less attractive. In addition, heat storage causes a reduction in the power cogeneration potential, which significantly affects the power supply and causes a reduction in excess electricity to generate income.

Suggested Citation

  • Wan Abdullah, Wan Aina Syahirah & Liew, Peng Yen & Ismail, Imran & Ho, Wai Shin & Woon, Kok Sin, 2025. "Liquid organic hydrogen carriers energy storage in urban-industrial symbiosis through process integration," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009314
    DOI: 10.1016/j.energy.2025.135289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225009314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    2. Eypasch, Martin & Schimpe, Michael & Kanwar, Aastha & Hartmann, Tobias & Herzog, Simon & Frank, Torsten & Hamacher, Thomas, 2017. "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers," Applied Energy, Elsevier, vol. 185(P1), pages 320-330.
    3. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    4. Butturi, M.A. & Lolli, F. & Sellitto, M.A. & Balugani, E. & Gamberini, R. & Rimini, B., 2019. "Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis," Applied Energy, Elsevier, vol. 255(C).
    5. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2018. "Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production," Applied Energy, Elsevier, vol. 225(C), pages 471-485.
    6. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    7. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    8. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    9. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    10. Yee Mah, Angel Xin & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Liew, Peng Yen & Muis, Zarina Ab, 2021. "Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage," Energy, Elsevier, vol. 218(C).
    11. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    12. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    13. Yong, Wen Ni & Liew, Peng Yen & Woon, Kok Sin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2021. "A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2022. "Optimization of the boiler pressure and working fluid in a binary organic Rankine cycle for different heat sources," Energy, Elsevier, vol. 238(PA).
    15. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Process Integration for Hybrid Power System supply planning and demand management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 834-842.
    16. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    17. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Manan, Zainuddin Abd, 2022. "Optimising renewable energy at the eco-industrial park: A mathematical modelling approach," Energy, Elsevier, vol. 261(PB).
    19. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
    20. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    21. Nemet, Andreja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Kravanja, Zdravko, 2012. "Methodology for maximising the use of renewables with variable availability," Energy, Elsevier, vol. 44(1), pages 29-37.
    22. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2008. "Battery behavior prediction and battery working states analysis of a hybrid solar–wind power generation system," Renewable Energy, Elsevier, vol. 33(6), pages 1413-1423.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong, Wen Ni & Liew, Peng Yen & Woon, Kok Sin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2021. "A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    3. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    4. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    5. Yee Mah, Angel Xin & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Liew, Peng Yen & Muis, Zarina Ab, 2021. "Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage," Energy, Elsevier, vol. 218(C).
    6. Zwickl-Bernhard, Sebastian & Oitzinger, Maximilian & Fischer, Helen Anais & Backe, Stian, 2025. "Strategic solar module stockpiling in the EU: A scenario-based analysis of costs and benefits beyond 2030," Energy Policy, Elsevier, vol. 203(C).
    7. Ran, Peng & Fan, Qinyang & Ou, YiFan & Zhang, Chunyu, 2025. "Energy, conventional exergy, advanced exergy and economic analysis of a steam injection compressed air energy storage integrated with concentrating solar power," Energy, Elsevier, vol. 323(C).
    8. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. Alizadeh Zolbin, Mahboubeh & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site integration considering wind /solar energy with supply/demand variation," Energy, Elsevier, vol. 252(C).
    10. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    11. Ai, Wei & Wang, Liang & Lin, Xipeng & Bai, Yakai & Huang, Jingjian & Hu, Jiexiang & Chen, Haisheng, 2024. "Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization," Energy, Elsevier, vol. 313(C).
    12. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    13. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    14. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    15. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    16. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
    17. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    18. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    19. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    20. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.