IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225007868.html
   My bibliography  Save this article

Multi-faceted procurement with mixed integer linear programming for corporate 100 % renewable energy goal

Author

Listed:
  • Hsu, Hsin-Wei
  • Fan, Zhi-Wei

Abstract

To achieve net-zero emissions, wind and solar power are projected to provide over half of global electricity by 2050. These sources, along with storage systems and Renewable Energy Certificates, are crucial for companies aiming for carbon neutrality. This study applies a mixed integer linear programming model to minimize procurement costs, considering regional cost differences and capacity factors. It focuses on the corporate sector, examining two cases based on different Renewable Energy 100 % Initiative accounting methods: the “Non-Circulation Case” and the “Circulation Case.” Each case includes “Aggressive” and “Normal” scenarios based on progress, outlining strategies, including capacity, electricity, storage, and cost. Key findings reveal that in the “Non-Circulation Case with Aggressive Scenario,” relying solely on a single energy source proves insufficient, necessitating investment in diverse sources such as secondary renewables (like wind), storage systems, and Renewable Energy Certificates. This strategy enhances system resilience but may pose financial challenges for smaller companies. In the “Non-Circulation Case with Normal Scenario,” companies can gradually invest in solar photovoltaics, supported by storage systems and Renewable Energy Certificates, to balance flexibility, efficiency, and affordability. The most significant contribution is demonstrated in the “Circulation Case with Aggressive Scenario,” where the model identifies a solar-dominated system emerges as the optimal strategy for achieving corporate 100 % renewable goals, driven by solar energy's superior cost-effectiveness and capacity factor in southern regions. In the “Circulation Case with Normal Scenario,” companies shift towards a solar-only energy system to leverage the high capacity factor in southern regions, ensuring a streamlined, scalable procurement strategy.

Suggested Citation

  • Hsu, Hsin-Wei & Fan, Zhi-Wei, 2025. "Multi-faceted procurement with mixed integer linear programming for corporate 100 % renewable energy goal," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007868
    DOI: 10.1016/j.energy.2025.135144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Hsin-Wei & Yang, Chu-Chuan, 2024. "Assessing land resource planning for agrivoltaics development: Examining synergies approaches between government and farmers," Energy, Elsevier, vol. 298(C).
    2. Binyet, Emmanuel & Hsu, Hsin-Wei, 2024. "Decarbonization strategies and achieving net-zero by 2050 in Taiwan: A study of independent power grid region," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    3. de Jong, P. & Sánchez, A.S. & Esquerre, K. & Kalid, R.A. & Torres, E.A., 2013. "Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 526-535.
    4. Alessio Trivella & Danial Mohseni-Taheri & Selvaprabu Nadarajah, 2023. "Meeting Corporate Renewable Power Targets," Management Science, INFORMS, vol. 69(1), pages 491-512, January.
    5. Peng, Qiao & Liu, Weilong & Zhang, Yong & Zeng, Shihong & Graham, Byron, 2023. "Generation planning for power companies with hybrid production technologies under multiple renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Li, Peixian & Ng, Jeremy & Lu, Yujie, 2022. "Accelerating the adoption of renewable energy certificate: Insights from a survey of corporate renewable procurement in Singapore," Renewable Energy, Elsevier, vol. 199(C), pages 1272-1282.
    7. Hou, Wenjuan & Zhang, Xueliang & Wu, Maowei & Yuxin Feng, & Yang, Linsheng, 2022. "Integrating stability and complementarity to assess the accommodable generation potential of multiscale solar and wind resources: A case study in a resource-based area in China," Energy, Elsevier, vol. 261(PB).
    8. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    9. Hoicka, Christina E. & Rowlands, Ian H., 2011. "Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada," Renewable Energy, Elsevier, vol. 36(1), pages 97-107.
    10. Al-Dousari, Ali & Al-Nassar, Waleed & Al-Hemoud, Ali & Alsaleh, Abeer & Ramadan, Ashraf & Al-Dousari, Noor & Ahmed, Modi, 2019. "Solar and wind energy: Challenges and solutions in desert regions," Energy, Elsevier, vol. 176(C), pages 184-194.
    11. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "Multi-objective optimization of a mixed renewable system with demand-side management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1461-1468, June.
    12. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    13. Wang, Hsiao-Fan & Sung, Meng-Ping & Hsu, Hsin-Wei, 2016. "Complementarity and substitution of renewable energy in target year energy supply-mix plannin–in the case of Taiwan," Energy Policy, Elsevier, vol. 90(C), pages 172-182.
    14. Bucciarelli, Martina & Paoletti, Simone & Vicino, Antonio, 2018. "Optimal sizing of energy storage systems under uncertain demand and generation," Applied Energy, Elsevier, vol. 225(C), pages 611-621.
    15. Schneider, Maximilian & Biel, K. & Pfaller, S. & Schaede, Hendrik & Rinderknecht, Stephan & Glock, C. H., 2016. "Using inventory models for sizing energy storage systems: An interdisciplinary approach," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79484, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Zhang, Qi & Wang, Ge & Li, Yan & Li, Hailong & McLellan, Benjamin & Chen, Siyuan, 2018. "Substitution effect of renewable portfolio standards and renewable energy certificate trading for feed-in tariff," Applied Energy, Elsevier, vol. 227(C), pages 426-435.
    17. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    18. Florian Egli & Rui Zhang & Victor Hopo & Tobias Schmidt & Bjarne Steffen, 2023. "The contribution of corporate initiatives to global renewable electricity deployment," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. O'Shaughnessy, Eric & Heeter, Jenny & Shah, Chandra & Koebrich, Sam, 2021. "Corporate acceleration of the renewable energy transition and implications for electric grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    20. Chung-Hao Chang & Shih-Fang Lo, 2022. "Impact Analysis of a National and Corporate Carbon Emission Reduction Target on Renewable Electricity Use: A Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    21. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    22. Kaenzig, Josef & Heinzle, Stefanie Lena & Wüstenhagen, Rolf, 2013. "Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany," Energy Policy, Elsevier, vol. 53(C), pages 311-322.
    23. Jensen, Stine Grenaa & Skytte, Klaus, 2003. "Simultaneous attainment of energy goals by means of green certificates and emission permits," Energy Policy, Elsevier, vol. 31(1), pages 63-71, January.
    24. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jong, Pieter & Kiperstok, Asher & Sánchez, Antonio Santos & Dargaville, Roger & Torres, Ednildo Andrade, 2016. "Integrating large scale wind power into the electricity grid in the Northeast of Brazil," Energy, Elsevier, vol. 100(C), pages 401-415.
    2. Songkai Wang & Rong Jia & Chang Luo & Yuan An & Pengcheng Guo, 2022. "Spatiotemporal Complementary Characteristics of Large-Scale Wind Power, Photovoltaic Power, and Hydropower," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    4. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    5. Lv, Furong & Tang, Haiping, 2025. "Assessing the impact of climate change on the optimal solar–wind hybrid power generation potential in China: A focus on stability and complementarity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    6. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    7. Olga Krechko & Alexey Mikhaylov, 2025. "Global electricity generation from renewable sources using fuzzy sets and spatial analysis: revolution in solar and wind energy in BRICS countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(2), pages 1553-1571, April.
    8. de Jong, Pieter & Kiperstok, Asher & Torres, Ednildo A., 2015. "Economic and environmental analysis of electricity generation technologies in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 725-739.
    9. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Rey-Costa, Elona & Elliston, Ben & Green, Donna & Abramowitz, Gab, 2023. "Firming 100% renewable power: Costs and opportunities in Australia's National Electricity Market," Renewable Energy, Elsevier, vol. 219(P1).
    12. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    13. Wei Sun & Sam Harrison & Gareth P. Harrison, 2020. "Value of Local Offshore Renewable Resource Diversity for Network Hosting Capacity," Energies, MDPI, vol. 13(22), pages 1-20, November.
    14. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    15. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    16. Woldeyohannes, Abraham Debebe & Woldemichael, Dereje Engida & Baheta, Aklilu Tesfamichael, 2016. "Sustainable renewable energy resources utilization in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 1-9.
    17. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    18. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    19. de Jong, P. & Sánchez, A.S. & Esquerre, K. & Kalid, R.A. & Torres, E.A., 2013. "Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 526-535.
    20. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.