IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225003007.html
   My bibliography  Save this article

A data-driven SOE estimation framework for lithium-ion batteries under drive cycle conditions over wide temperature range

Author

Listed:
  • Mou, Jianhui
  • Zhou, Wenqi
  • Yu, Chengcheng
  • Fu, Qiang
  • Wang, Bo
  • Wang, Yangwei
  • Li, Junjie

Abstract

Accurately estimating the state of energy (SOE) of a battery is crucial in battery system management to enhance battery operation's reliability and safety. Due to the sensitivity of SOE to temperature and operating conditions, it is challenging to measure SOE directly. To achieve accurate estimation results, accurate and stable estimation models are indispensable. Therefore, the aim of this paper is to propose a data-driven SOE estimation method for lithium-ion batteries, so as to achieve accurate estimation results. In this study, the method describes SOE based on current, terminal voltage, temperature, and state of charge (SOC) curves of different temperatures and multiple driving cycles, especially the differences in discharge curves between these data. Then, based on the fusion of convolutional neural network (CNN) and bilayer gated recurrent unit (BGRU), a model is designed to enhance the capacity of model to extract sequence features for the SOE estimation in various scenarios. Additionally, the sliding window technique is used to segment the input data, creating a multi-temporal input structure that improves the correlation between battery parameters and optimizes the impact of output on SOE. In order to further verify the estimation performance of the model, experiments are compared under different machine learning models. The results show that the proposed model can provide accurate SOE estimation drive cycle conditions over wide temperature range, and battery material conditions. The RMSE and MAE of the model are limited to 0.7 % and 0.6 %, respectively.

Suggested Citation

  • Mou, Jianhui & Zhou, Wenqi & Yu, Chengcheng & Fu, Qiang & Wang, Bo & Wang, Yangwei & Li, Junjie, 2025. "A data-driven SOE estimation framework for lithium-ion batteries under drive cycle conditions over wide temperature range," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225003007
    DOI: 10.1016/j.energy.2025.134658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
    2. Fengyuan Fang & Caiqing Ma & Yan Ji, 2024. "A Method for State of Charge and State of Health Estimation of LithiumBatteries Based on an Adaptive Weighting Unscented Kalman Filter," Energies, MDPI, vol. 17(9), pages 1-18, April.
    3. Guangyi Yang & Xianglin Wang & Ran Li & Xiaoyu Zhang, 2024. "State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm," Sustainability, MDPI, vol. 16(15), pages 1-19, July.
    4. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    6. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wei & Teh, Jiashen & Alharbi, Bader, 2025. "An asynchronous electro-thermal coupling modeling method of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
    2. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
    3. Zhong, Hao & Lei, Fei & Zhu, Wenhao & Zhang, Zhe, 2022. "An operation efficacy-oriented predictive control management for power-redistributable lithium-ion battery pack," Energy, Elsevier, vol. 251(C).
    4. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    5. Wang, Shuai & Ma, Hongyan & Zhang, Yingda & Li, Shengyan & He, Wei, 2023. "Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach," Energy, Elsevier, vol. 282(C).
    6. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    7. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    9. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    10. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    11. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    12. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    13. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    14. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Xin Lai & Ming Yuan & Xiaopeng Tang & Yi Yao & Jiahui Weng & Furong Gao & Weiguo Ma & Yuejiu Zheng, 2022. "Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing," Energies, MDPI, vol. 15(19), pages 1-20, October.
    17. Liu, Wenxue & Hu, Xiaosong & Zhang, Kai & Xie, Yi & He, Jinsong & Song, Ziyou, 2025. "Enabling high-fidelity electrothermal modeling of electric flying car batteries: A physics-data hybrid approach," Applied Energy, Elsevier, vol. 388(C).
    18. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    19. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    20. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225003007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.