IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics036054422500307x.html
   My bibliography  Save this article

Investigation of microscopic mechanisms for carbon dioxide homogeneous crystallization during pressurized liquefaction of natural gas

Author

Listed:
  • Cai, Weihua
  • Wang, Zhaoxi
  • Cao, Hengguang
  • Wang, Bingbing
  • Wang, Yue
  • Bian, Jiang
  • Hua, Yihuai
  • Li, Qian

Abstract

Clarifying the dynamic mechanism of carbon dioxide (CO2) crystallization is of great significance for effectively regulating the crystallization behavior of CO2 during natural gas pressurized liquefaction. Therefore, this paper investigates the microscopic behavior of liquid CO2 crystallization under different temperature conditions and cooling rates by molecular dynamics simulation. It analyzes the dynamic characteristics of crystal nuclei formation and growth, elucidating the influence mechanism of temperature on the homogeneous crystallization of CO2. The results show that, in a cryogenic environment, the homogeneous crystallization process of CO2 undergoes two stages, densification and ordering, where C atoms gradually transit from a disordered liquid distribution to an ordered crystalline arrangement. An appropriate temperature helps balance intermolecular interactions and diffusion movement capacity, which are crucial for the crystal nuclei formation and growth. Under cryogenic conditions, after nucleation occurs, a transitional phase is required before rapid growth can commence. Additionally, as the cooling rate decreases, the distribution characteristics of C atoms shift from disorder to order, slower cooling rates facilitate the crystal formation and structural stabilization and increase the nucleation temperature, thereby shortening the transition time for the nucleation to enter the rapid growth stage.

Suggested Citation

  • Cai, Weihua & Wang, Zhaoxi & Cao, Hengguang & Wang, Bingbing & Wang, Yue & Bian, Jiang & Hua, Yihuai & Li, Qian, 2025. "Investigation of microscopic mechanisms for carbon dioxide homogeneous crystallization during pressurized liquefaction of natural gas," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s036054422500307x
    DOI: 10.1016/j.energy.2025.134665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500307X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Jiang & Cao, Xuewen & Yang, Wen & Song, Xiaodan & Xiang, Chengcheng & Gao, Song, 2019. "Condensation characteristics of natural gas in the supersonic liquefaction process," Energy, Elsevier, vol. 168(C), pages 99-110.
    2. Wen, Chuang & Li, Bo & Ding, Hongbing & Akrami, Mohammad & Zhang, Haoran & Yang, Yan, 2022. "Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing," Applied Energy, Elsevier, vol. 310(C).
    3. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.
    4. Ren, Ze-Yu & Wang, Bing-Bing & Qiu, Guo-Dong & Bian, Jiang & Li, Qiu-Ying & Cai, Wei-Hua, 2024. "Molecular dynamics study on desublimation and crystal nucleation of carbon dioxide on a low temperature surface," Energy, Elsevier, vol. 292(C).
    5. Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Li, Qian & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2024. "Nucleation mechanism of methane heterogeneous condensation under different driving forces," Energy, Elsevier, vol. 309(C).
    6. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    7. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "System evaluation of offshore platforms with gas liquefaction processes," Energy, Elsevier, vol. 144(C), pages 594-606.
    8. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    9. Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2023. "Heterogeneous nucleation condensation of methane gas on the wall-A molecular dynamics study," Energy, Elsevier, vol. 283(C).
    10. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    11. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.
    12. Zhu Liu & Dabo Guan & Scott Moore & Henry Lee & Jun Su & Qiang Zhang, 2015. "Climate policy: Steps to China's carbon peak," Nature, Nature, vol. 522(7556), pages 279-281, June.
    13. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhaoxi & Wang, Yue & Cao, Hengguang & Wang, Bingbing & Li, Qian & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2025. "Molecular scale crystallization dynamic characteristics and melting mechanism of carbon dioxide," Energy, Elsevier, vol. 324(C).
    2. Wang, Zhaoxi & Wang, Bingbing & Wang, Yue & Bian, Jiang & Hua, Yihuai & Li, Qian & Cai, Weihua, 2025. "Condensation processes of carbon dioxide in high-pressure methane gas: A microscopic study of the dynamic behavior of nucleation, dissolution, and crystallization," Energy, Elsevier, vol. 317(C).
    3. Ren, Ze-Yu & Wang, Bing-Bing & Qiu, Guo-Dong & Bian, Jiang & Li, Qiu-Ying & Cai, Wei-Hua, 2025. "Molecular dynamics study of carbon dioxide desublimation on surfaces with different hydrophobicity," Energy, Elsevier, vol. 318(C).
    4. Gao, Ruihang & Cai, Benan & Zhao, Yuqi & Wang, Rong & Che, Xunjian & Wang, Haijun & Cai, Weihua, 2025. "Advanced performance analysis and life cycle assessment of a coupled system: MSR, LT-PEMFC and spray flash desalination," Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaoxi & Wang, Bingbing & Wang, Yue & Bian, Jiang & Hua, Yihuai & Li, Qian & Cai, Weihua, 2025. "Condensation processes of carbon dioxide in high-pressure methane gas: A microscopic study of the dynamic behavior of nucleation, dissolution, and crystallization," Energy, Elsevier, vol. 317(C).
    2. Wang, Zhaoxi & Wang, Yue & Cao, Hengguang & Wang, Bingbing & Li, Qian & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2025. "Molecular scale crystallization dynamic characteristics and melting mechanism of carbon dioxide," Energy, Elsevier, vol. 324(C).
    3. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    4. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Wen, Chuang & Yang, Yan, 2024. "Mass, energy and economic analysis of supersonic CO2 separation for carbon capture, utilization and storage (CCUS)," Applied Energy, Elsevier, vol. 373(C).
    5. Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Li, Qian & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2024. "Nucleation mechanism of methane heterogeneous condensation under different driving forces," Energy, Elsevier, vol. 309(C).
    6. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    7. Bian, Jiang & Ding, Gaoya & Guo, Dan & Cao, Hengguang & Liu, Yang & Cao, Xuewen, 2023. "Surface crystallization mechanism of n-hexane droplets," Energy, Elsevier, vol. 263(PD).
    8. Zhang, Guojie & Li, Yunpeng & Jin, Zunlong & Dykas, Sławomir & Cai, Xiaoshu, 2024. "A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization," Energy, Elsevier, vol. 286(C).
    9. Li, Zhuoran & Zhang, Caigong & Li, Changjun & Jia, Wenlong, 2022. "Thermodynamic study on the natural gas condensation in the throttle valve for the efficiency of the natural gas transport system," Applied Energy, Elsevier, vol. 322(C).
    10. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Li, Shujuan, 2024. "Evaluation of dynamic behaviors in varied swirling flows for high-pressure offshore natural gas supersonic dehydration," Energy, Elsevier, vol. 300(C).
    11. Ren, Ze-Yu & Wang, Bing-Bing & Qiu, Guo-Dong & Bian, Jiang & Li, Qiu-Ying & Cai, Wei-Hua, 2025. "Molecular dynamics study of carbon dioxide desublimation on surfaces with different hydrophobicity," Energy, Elsevier, vol. 318(C).
    12. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
    13. Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system," Applied Energy, Elsevier, vol. 356(C).
    14. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    15. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang, 2023. "Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator," Energy, Elsevier, vol. 279(C).
    16. Xueyuan Long & Qian Huang & Yuan Tian & Lingyan Mu, 2022. "Effects of the Operating Parameters of Supersonic Separators on the Supersonic Liquefaction Characteristics of Natural Gas," Energies, MDPI, vol. 15(7), pages 1-16, March.
    17. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Yang, Yan & Wen, Chuang, 2023. "Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system," Applied Energy, Elsevier, vol. 346(C).
    18. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    19. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    20. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s036054422500307x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.