IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023197.html
   My bibliography  Save this article

Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas

Author

Listed:
  • Guo, Dan
  • Cao, Xuewen
  • Ding, Gaoya
  • Zhang, Pan
  • Liu, Yang
  • Bian, Jiang

Abstract

In natural gas liquefaction process, the pre-crystallization of heavy components contributes to the heterogeneous nucleation of methane, which may provide insights for the optimization of traditional processing and liquefaction process. However, the crystallization mechanism of heavy hydrocarbons has not been solved yet and the applicability of existing nucleation models to heavy hydrocarbons remains unclear. To tackle this mystery, molecular dynamics simulations were conducted to examine the crystallization of heavy hydrocarbons thermodynamically and kinetically, and explore the nucleation pathway directly related to the crystallization kinetics. The results indicate that the energy cost of heavy hydrocarbon crystallization is the reduction of Lennard-Jones energy and torsion angle energy, and the crystallization is intrinsically a process of orientational symmetry breaking in heavy hydrocarbon structure. Besides, the orientational symmetry breaking is found to be strongly size-dependent and it is more marked for droplets with less than 1000 molecules. A unified picture was proposed for the crystallization pathway, as manifest in the preordering of surface molecules, surface crystallization and internal layer-by-layer crystallization, respectively. Further, the occurrence of internal crystallization and the orientational symmetry breaking are coupled and competitive. Moreover, a non-classical two-step model for the homogeneous nucleation of heavy hydrocarbon droplets was established.

Suggested Citation

  • Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023197
    DOI: 10.1016/j.energy.2021.122071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Jiang & Cao, Xuewen & Yang, Wen & Song, Xiaodan & Xiang, Chengcheng & Gao, Song, 2019. "Condensation characteristics of natural gas in the supersonic liquefaction process," Energy, Elsevier, vol. 168(C), pages 99-110.
    2. Chen, Lei & Wang, Shanyou & Tao, Wenquan, 2019. "A study on thermodynamic and transport properties of carbon dioxide using molecular dynamics simulation," Energy, Elsevier, vol. 179(C), pages 1094-1102.
    3. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "System evaluation of offshore platforms with gas liquefaction processes," Energy, Elsevier, vol. 144(C), pages 594-606.
    4. Martin Fitzner & Gabriele C. Sosso & Fabio Pietrucci & Silvio Pipolo & Angelos Michaelides, 2017. "Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    5. Zhang, Ruihang & Wu, Chufan & Song, Wuwenjie & Deng, Chun & Yang, Minbo, 2020. "Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis," Energy, Elsevier, vol. 207(C).
    6. J. A. Sellberg & C. Huang & T. A. McQueen & N. D. Loh & H. Laksmono & D. Schlesinger & R. G. Sierra & D. Nordlund & C. Y. Hampton & D. Starodub & D. P. DePonte & M. Beye & C. Chen & A. V. Martin & A. , 2014. "Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature," Nature, Nature, vol. 510(7505), pages 381-384, June.
    7. Wouter J. E. M. Habraken & Jinhui Tao & Laura J. Brylka & Heiner Friedrich & Luca Bertinetti & Anna S. Schenk & Andreas Verch & Vladimir Dmitrovic & Paul H. H. Bomans & Peter M. Frederik & Jozua Laven, 2013. "Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate," Nature Communications, Nature, vol. 4(1), pages 1-12, June.
    8. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueyuan Long & Qian Huang & Yuan Tian & Lingyan Mu, 2022. "Effects of the Operating Parameters of Supersonic Separators on the Supersonic Liquefaction Characteristics of Natural Gas," Energies, MDPI, vol. 15(7), pages 1-16, March.
    2. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    3. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    4. Bian, Jiang & Ding, Gaoya & Guo, Dan & Cao, Hengguang & Liu, Yang & Cao, Xuewen, 2023. "Surface crystallization mechanism of n-hexane droplets," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bian, Jiang & Ding, Gaoya & Guo, Dan & Cao, Hengguang & Liu, Yang & Cao, Xuewen, 2023. "Surface crystallization mechanism of n-hexane droplets," Energy, Elsevier, vol. 263(PD).
    2. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    3. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    4. Yang, Jinghua & Wang, Min & Wu, Lei & Liu, Yanwei & Qiu, Shuxia & Xu, Peng, 2021. "A novel Monte Carlo simulation on gas flow in fractal shale reservoir," Energy, Elsevier, vol. 236(C).
    5. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    6. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    7. Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).
    8. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    9. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    10. Chen, Jianan & Huang, Zhu & Li, Anna & Gao, Ran & Jiang, Wenming, 2022. "Carbon capture in laval nozzles with different bicubic parametric curves and translation of witoszynski curves," Energy, Elsevier, vol. 260(C).
    11. Li, Zhuoran & Zhang, Caigong & Li, Changjun & Jia, Wenlong, 2022. "Thermodynamic study on the natural gas condensation in the throttle valve for the efficiency of the natural gas transport system," Applied Energy, Elsevier, vol. 322(C).
    12. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    13. Xiao, Yang & Ma, Changjian & Li, Mengyao & Zhangzhong, Lili & Song, Peng & Li, Yunkai, 2023. "Interaction and adaptation of phosphorus fertilizer and calcium ion in drip irrigation systems: the perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Shan, Baochao & Wang, Runxi & Guo, Zhaoli & Wang, Peng, 2021. "Contribution quantification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model," Energy, Elsevier, vol. 228(C).
    15. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    16. Wu, Jianguo & Luo, Chao & Zhong, Kesu & Li, Yi & Li, Guoliang & Du, Zhongming & Yang, Jijin, 2023. "Innovative characterization of organic nanopores in marine shale by the integration of HIM and SEM," Energy, Elsevier, vol. 282(C).
    17. Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
    18. Gao, Zheng & Li, Bobo & Li, Jianhua & Jia, Lidan & Wang, Zhonghui, 2023. "Adsorption characteristics and thermodynamic analysis of shale in northern Guizhou, China: Measurement, modeling and prediction," Energy, Elsevier, vol. 262(PA).
    19. Xueyuan Long & Qian Huang & Yuan Tian & Lingyan Mu, 2022. "Effects of the Operating Parameters of Supersonic Separators on the Supersonic Liquefaction Characteristics of Natural Gas," Energies, MDPI, vol. 15(7), pages 1-16, March.
    20. Wen, Chuang & Gong, Liang & Ding, Hongbing & Yang, Yan, 2020. "Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.