IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics036054422301784x.html
   My bibliography  Save this article

Innovative characterization of organic nanopores in marine shale by the integration of HIM and SEM

Author

Listed:
  • Wu, Jianguo
  • Luo, Chao
  • Zhong, Kesu
  • Li, Yi
  • Li, Guoliang
  • Du, Zhongming
  • Yang, Jijin

Abstract

The characterization of organic nanopores across the entire range is essential for gas storage and productivity evaluation of marine shale. To achieve a precise and comprehensive analysis of organic nanopore properties, an integration method of helium ion microscope (HIM) and scanning electron microscope (SEM), as well as focused ion beam-HIM (FIB-HIM) and FIB-SEM, was proposed. This integration method extends the organic pore imaging and quantitative analysis to below 10 nm. Results demonstrate that organic pores below 10 nm significantly impact the evaluation of shale gas storage and productivity by contributing to the porosity and specific surface area and altering pore size distribution and connectivity characteristics. The surface porosity increases by 10.73%, while the specific surface area increases by 76% according to the integration method. The integrated pore size distribution converts the unimodal PSD from the stitched SEM mosaic to a multimodal PSD, supporting the multi-stage formation mode of organic nanopores: larger bubble pores appear with oil generation at the early stage, while smaller spongy pores appear with gas generation at the later stage. The organic pores revealed by FIB-HIM have higher coordination numbers and a higher proportion of inner-connected volume, showing the more complex connectivity characteristics. Despite limitations due to heterogeneity and inadequate resolution, these novel insights by the integration method highlight the importance of exploring organic pores at the nanoscale and have the potential to inform further research in this field.

Suggested Citation

  • Wu, Jianguo & Luo, Chao & Zhong, Kesu & Li, Yi & Li, Guoliang & Du, Zhongming & Yang, Jijin, 2023. "Innovative characterization of organic nanopores in marine shale by the integration of HIM and SEM," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s036054422301784x
    DOI: 10.1016/j.energy.2023.128390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301784X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).
    2. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    3. Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
    4. Saif, Tarik & Lin, Qingyang & Butcher, Alan R. & Bijeljic, Branko & Blunt, Martin J., 2017. "Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM," Applied Energy, Elsevier, vol. 202(C), pages 628-647.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    2. Shan, Baochao & Wang, Runxi & Guo, Zhaoli & Wang, Peng, 2021. "Contribution quantification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model," Energy, Elsevier, vol. 228(C).
    3. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    4. Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).
    5. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    6. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    7. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    8. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    9. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    10. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    11. Zhiyao Zhang & Shang Xu & Qiyang Gou & Qiqi Li, 2022. "Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review," Energies, MDPI, vol. 15(22), pages 1-21, November.
    12. Sun, Wenjibin & Zuo, Yujun & Lin, Zhang & Wu, Zhonghu & Liu, Hao & Lin, Jianyun & Chen, Bin & Chen, Qinggang & Pan, Chao & Lan, Baofeng & Liu, Song, 2023. "Impact of tectonic deformation on shale pore structure using adsorption experiments and 3D digital core observation: A case study of the Niutitang Formation in Northern Guizhou," Energy, Elsevier, vol. 278(C).
    13. Yang, Jinghua & Wang, Min & Wu, Lei & Liu, Yanwei & Qiu, Shuxia & Xu, Peng, 2021. "A novel Monte Carlo simulation on gas flow in fractal shale reservoir," Energy, Elsevier, vol. 236(C).
    14. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    15. Yuanyuan Tian & Qing Chen & Changhui Yan & Hongde Chen & Yanqing He & Yufeng He, 2022. "A New Adsorption Equation for Nano-Porous Shale Rocks and Its Application in Pore Size Distribution Analysis," Energies, MDPI, vol. 15(9), pages 1-13, April.
    16. Hongyan Wang & Shangwen Zhou & Jiehui Zhang & Ziqi Feng & Pengfei Jiao & Leifu Zhang & Qin Zhang, 2021. "Clarifying the Effect of Clay Minerals on Methane Adsorption Capacity of Marine Shales in Sichuan Basin, China," Energies, MDPI, vol. 14(20), pages 1-15, October.
    17. Yang Su & Ming Zha & Keyu Liu & Xiujian Ding & Jiangxiu Qu & Jiehua Jin, 2021. "Characterization of Pore Structures and Implications for Flow Transport Property of Tight Reservoirs: A Case Study of the Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwestern China," Energies, MDPI, vol. 14(5), pages 1-20, February.
    18. Wenzhou Du & Yue Wang & Xuelin Liu & Lulu Sun, 2018. "Study on Low Temperature Oxidation Characteristics of Oil Shale Based on Temperature Programmed System," Energies, MDPI, vol. 11(10), pages 1-12, September.
    19. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    20. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s036054422301784x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.