IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224028238.html
   My bibliography  Save this article

Nucleation mechanism of methane heterogeneous condensation under different driving forces

Author

Listed:
  • Wang, Yue
  • Wang, Zhaoxi
  • Wang, Bingbing
  • Li, Qian
  • Bian, Jiang
  • Hua, Yihuai
  • Cai, Weihua

Abstract

Clarifying alkane gas condensation characteristics is crucial to designing and optimizing liquefaction heat exchangers, which imposes higher demands on the microscopic understanding of alkane heterogeneous condensation. Thus, in this study, the condensation process of methane nucleation under different driving forces is investigated by molecular dynamics (MD) simulations. The dynamics characteristics of nucleation in methane heterogeneous condensation are analyzed by varying initial gas-phase pressure, cold wall temperature, and ethane content. The results showed that increasing the initial gas-phase pressure enhances intermolecular interactions, which alter the cluster formation path and significantly increase the methane gas nucleation rate from 1.997 × 1033/(m3·s) to 1.068 × 1034/(m3·s). While lowering the cold wall temperature promotes condensation by weakening the thermal motion of the gas molecules. Once condensation nuclei form in the system, the lower temperature conditions from lowering the cold wall temperature result in a higher growth rate of the clusters. Additionally, the addition of easily condensable component ethane can improve the condensation nucleation characteristics of low-saturated methane gas, facilitating the liquefaction of methane. This study aims to provide a microscopic understanding of the advancement of gas liquefaction technology by investigating the heterogeneous nucleation of alkane under different conditions from a microscopic perspective.

Suggested Citation

  • Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Li, Qian & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2024. "Nucleation mechanism of methane heterogeneous condensation under different driving forces," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028238
    DOI: 10.1016/j.energy.2024.133049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Jiang & Cao, Xuewen & Yang, Wen & Song, Xiaodan & Xiang, Chengcheng & Gao, Song, 2019. "Condensation characteristics of natural gas in the supersonic liquefaction process," Energy, Elsevier, vol. 168(C), pages 99-110.
    2. Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2023. "Heterogeneous nucleation condensation of methane gas on the wall-A molecular dynamics study," Energy, Elsevier, vol. 283(C).
    3. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    4. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    5. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bian, Jiang & Ding, Gaoya & Guo, Dan & Cao, Hengguang & Liu, Yang & Cao, Xuewen, 2023. "Surface crystallization mechanism of n-hexane droplets," Energy, Elsevier, vol. 263(PD).
    2. Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2023. "Heterogeneous nucleation condensation of methane gas on the wall-A molecular dynamics study," Energy, Elsevier, vol. 283(C).
    3. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    4. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Tian, Zhongyun & Zheng, Wenke & Guo, Jiwei & Jiang, Yiqiang & Liang, Zhirong & Mi, Xiaoguang, 2024. "Fundamental research on the condensation heat transfer of the hydrocarbon-mixture energy in a spiral tube described by a universal model using flow pattern based and general modes," Energy, Elsevier, vol. 296(C).
    6. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    7. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    8. Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
    9. Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system," Applied Energy, Elsevier, vol. 356(C).
    10. Chen, Jianan & Gao, YuanYuan & Li, Anna & Huang, Zhu & Jiang, Wenming, 2024. "Virtual nozzle phenomenon caused by separation bubble during CO2 capture," Energy, Elsevier, vol. 303(C).
    11. El Hafdaoui, Hamza & Jelti, Faissal & Khallaayoun, Ahmed & Jamil, Abdelmajid & Ouazzani, Kamar, 2024. "Energy and environmental evaluation of alternative fuel vehicles in Maghreb countries," Innovation and Green Development, Elsevier, vol. 3(1).
    12. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    13. Du, Yifan & Liu, Le & Han, Hui & Liu, Liang & Cui, Jiachen & Li, Yuxing & Zhu, Jianlu & Liu, Miaoer, 2024. "Liquefaction efficiency study of heterogeneous condensation of methane-ethane binary gas mixtures with different component contents," Energy, Elsevier, vol. 306(C).
    14. Chen, Jianan & Huang, Zhu & Li, Anna & Gao, Ran & Jiang, Wenming, 2022. "Carbon capture in laval nozzles with different bicubic parametric curves and translation of witoszynski curves," Energy, Elsevier, vol. 260(C).
    15. Kanwal, Saira & Mehran, Muhammad Taqi & Hassan, Muhammad & Anwar, Mustafa & Naqvi, Salman Raza & Khoja, Asif Hussain, 2022. "An integrated future approach for the energy security of Pakistan: Replacement of fossil fuels with syngas for better environment and socio-economic development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Li, Zhuoran & Zhang, Caigong & Li, Changjun & Jia, Wenlong, 2022. "Thermodynamic study on the natural gas condensation in the throttle valve for the efficiency of the natural gas transport system," Applied Energy, Elsevier, vol. 322(C).
    17. Guo, Dan & Cao, Xuewen & Ma, Lihui & Zhang, Pan & Liu, Yang & Bian, Jiang, 2023. "Bulk and interfacial properties of methane-heavy hydrocarbon mixtures," Energy, Elsevier, vol. 284(C).
    18. Chen, Yimin & Xu, Changan & Vaidyanathan, Seetharaman, 2020. "Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production," Applied Energy, Elsevier, vol. 261(C).
    19. Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
    20. Xueyuan Long & Qian Huang & Yuan Tian & Lingyan Mu, 2022. "Effects of the Operating Parameters of Supersonic Separators on the Supersonic Liquefaction Characteristics of Natural Gas," Energies, MDPI, vol. 15(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.