IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003177.html
   My bibliography  Save this article

Molecular dynamics study on desublimation and crystal nucleation of carbon dioxide on a low temperature surface

Author

Listed:
  • Ren, Ze-Yu
  • Wang, Bing-Bing
  • Qiu, Guo-Dong
  • Bian, Jiang
  • Li, Qiu-Ying
  • Cai, Wei-Hua

Abstract

To capture CO2 crystal nucleation during the desublimation, we conducted a molecular dynamics study on the desublimation process of CO2 on a low temperature plate. The desublimation process is characterized by three models corresponding to different degrees of supercooling. When the plate temperature is below 82 K, the solid CO2 with a glassy state structure forms after CO2 gas molecules adsorb onto the cool plate. In the temperature range of 83–113 K, CO2 crystal nucleus forms within the disordered solid CO2, and subsequently the nucleus grows into Pa3-type crystal. For the plate temperature between 114 and 128 K, a liquid CO2 phase initially forms, the nucleus then generates and grows to develop into Pa3 crystal. The CO2 crystal nucleation is accompanied by the reduction of molecular potential energy and the increase of molecular kinetic energy. Additionally, the recalescence phenomenon occurs during CO2 crystal nucleation. It is crucial that the molecular kinetic energy and molecular distance fall within a specific range to enable the formation of CO2 nucleus and regular Pa3 crystal. Consequently, the CO2 crystal nucleation can only occur within a specific range of plate temperatures.

Suggested Citation

  • Ren, Ze-Yu & Wang, Bing-Bing & Qiu, Guo-Dong & Bian, Jiang & Li, Qiu-Ying & Cai, Wei-Hua, 2024. "Molecular dynamics study on desublimation and crystal nucleation of carbon dioxide on a low temperature surface," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003177
    DOI: 10.1016/j.energy.2024.130546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.