IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp495-509.html
   My bibliography  Save this article

A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle

Author

Listed:
  • Zhao, Ruikai
  • Zhao, Li
  • Deng, Shuai
  • Song, Chunfeng
  • He, Junnan
  • Shao, Yawei
  • Li, Shuangjun

Abstract

Currently, the significant energy penalty and performance limitation of energy consumption are the main technical barriers to the large-scale applications of CO2 capture. Carbon pump, which realizes an enrichment of CO2 from carbon source to carbon sink, is applied in a modeling for energy-efficiency analysis of CO2 capture technologies. In this study, two adsorption technologies, including vacuum-pressure swing adsorption (VPSA) and pressure-temperature swing adsorption (PTSA), are compared in terms of the minimum separation work and the second-law efficiency. Based on carbon pump, two adsorption cycles can be presented through the process expression in the adsorption isotherm diagram, which is an easy pathway to show CO2 adsorbed amounts for each step. The influence of process parameters for VPSA and PTSA were studied as well.

Suggested Citation

  • Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:495-509
    DOI: 10.1016/j.energy.2017.01.158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns," Energy, Elsevier, vol. 109(C), pages 495-505.
    3. Vasudevan, Suraj & Farooq, Shamsuzzaman & Karimi, Iftekhar A. & Saeys, Mark & Quah, Michael C.G. & Agrawal, Rakesh, 2016. "Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes," Energy, Elsevier, vol. 103(C), pages 709-714.
    4. Ding, Yu-Dong & Song, Gan & Liao, Qiang & Zhu, Xun & Chen, Rong, 2016. "Bench scale study of CO2 adsorption performance of MgO in the presence of water vapor," Energy, Elsevier, vol. 112(C), pages 101-110.
    5. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    6. Hagi, Hayato & Neveux, Thibaut & Le Moullec, Yann, 2015. "Efficiency evaluation procedure of coal-fired power plants with CO2 capture, cogeneration and hybridization," Energy, Elsevier, vol. 91(C), pages 306-323.
    7. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    8. Vaccarelli, Maura & Sammak, Majed & Jonshagen, Klas & Carapellucci, Roberto & Genrup, Magnus, 2016. "Combined cycle power plants with post-combustion CO2 capture: Energy analysis at part load conditions for different HRSG configurations," Energy, Elsevier, vol. 112(C), pages 917-925.
    9. Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2014. "Energy consumption analysis for CO2 separation from gas mixtures," Applied Energy, Elsevier, vol. 130(C), pages 237-243.
    10. Zhang, Wenbin & Liu, Hao & Sun, Yuan & Cakstins, Janis & Sun, Chenggong & Snape, Colin E., 2016. "Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture," Applied Energy, Elsevier, vol. 168(C), pages 394-405.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Y. & Liu, W. & Yong, J.Y. & Zhang, X.J. & Jiang, L., 2023. "Solar-assisted temperature vacuum swing adsorption for direct air capture: Effect of relative humidity," Applied Energy, Elsevier, vol. 348(C).
    2. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Vogtenhuber, H. & Hofmann, R. & Helminger, F. & Schöny, G., 2018. "Process simulation of an efficient temperature swing adsorption concept for biogas upgrading," Energy, Elsevier, vol. 162(C), pages 200-209.
    5. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 138(C), pages 776-784.
    6. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    7. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2018. "Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 155(C), pages 46-55.
    8. Li, Shuangjun & Deng, Shuai & Zhao, Ruikai & Zhao, Li & Xu, Weicong & Yuan, Xiangzhou & Guo, Zhihao, 2019. "Entropy analysis on energy-consumption process and improvement method of temperature/vacuum swing adsorption (TVSA) cycle," Energy, Elsevier, vol. 179(C), pages 876-889.
    9. Shen, Yongting & Hocksun Kwan, Trevor & Yang, Hongxing, 2022. "Parametric and global seasonal analysis of a hybrid PV/T-CCA system for combined CO2 capture and power generation," Applied Energy, Elsevier, vol. 311(C).
    10. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
    11. Guo, Zhihao & Deng, Shuai & Zhu, Yu & Zhao, Li & Yuan, Xiangzhou & Li, Shuangjun & Chen, Lijin, 2020. "Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation," Energy, Elsevier, vol. 208(C).
    12. Liu, W. & Lin, Y.C. & Jiang, L. & Ji, Y. & Yong, J.Y. & Zhang, X.J., 2022. "Thermodynamic exploration of two-stage vacuum-pressure swing adsorption for carbon dioxide capture," Energy, Elsevier, vol. 241(C).
    13. Vahid Barahimi & Monica Ho & Eric Croiset, 2023. "From Lab to Fab: Development and Deployment of Direct Air Capture of CO 2," Energies, MDPI, vol. 16(17), pages 1-33, September.
    14. Li, Shuangjun & Deng, Shuai & Zhao, Li & Yuan, Xiangzhou & Yun, Heesun, 2020. "How to express the adsorbed CO2 with the Gibbs’ thermodynamic graphical method: A preliminary study," Energy, Elsevier, vol. 193(C).
    15. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    2. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    3. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    4. Li, Shuangjun & Deng, Shuai & Zhao, Ruikai & Zhao, Li & Xu, Weicong & Yuan, Xiangzhou & Guo, Zhihao, 2019. "Entropy analysis on energy-consumption process and improvement method of temperature/vacuum swing adsorption (TVSA) cycle," Energy, Elsevier, vol. 179(C), pages 876-889.
    5. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    6. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    7. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    8. Liu, Yamin & Yu, Xiaojing, 2018. "Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6," Applied Energy, Elsevier, vol. 211(C), pages 1080-1088.
    9. Zhao, Ruikai & Liu, Longcheng & Zhao, Li & Deng, Shuai & Li, Shuangjun & Zhang, Yue, 2019. "A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Cheng, Jun & Wang, Yali & Liu, Niu & Hou, Wen & Zhou, Junhu, 2020. "Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks," Applied Energy, Elsevier, vol. 272(C).
    11. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    12. Guo, Zhihao & Deng, Shuai & Zhu, Yu & Zhao, Li & Yuan, Xiangzhou & Li, Shuangjun & Chen, Lijin, 2020. "Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation," Energy, Elsevier, vol. 208(C).
    13. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    14. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    15. Shen, Yongting & Hocksun Kwan, Trevor & Yang, Hongxing, 2022. "Parametric and global seasonal analysis of a hybrid PV/T-CCA system for combined CO2 capture and power generation," Applied Energy, Elsevier, vol. 311(C).
    16. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    17. Yan, Shuren & Zhu, Ding & Zhang, Zhiyong & Li, Hai & Chen, Guangjin & Liu, Bei, 2019. "A pilot-scale experimental study on CO2 capture using Zeolitic imidazolate framework-8 slurry under normal pressure," Applied Energy, Elsevier, vol. 248(C), pages 104-114.
    18. Nie, Lijuan & Jin, Junsu & Chen, Jian & Mi, Jianguo, 2018. "Preparation and performance of amine-based polyacrylamide composite beads for CO2 capture," Energy, Elsevier, vol. 161(C), pages 60-69.
    19. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    20. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:495-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.